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CHAPTER 1. Introduction

This dissertation describes several different spacecraft guidance algorithms, with applica-

tions including asteroid intercept and rendezvous, planetary landing, and orbital transfer. The

research described here was conducted at the Asteroid Deflection Research Center (ADRC) at

Iowa State University.

1.1 Spacecraft Guidance

The fundamental goal of a spacecraft guidance law is to take a spacecraft from some known

current state (position and velocity) to some desired final state. The guidance law uses some

measured state information, such as the spacecraft’s current position or the angle between

the target position and the spacecraft’s line of sight, as input to determine how to fire the

spacecraft’s thrusters to ultimately reach the desired final state. Different guidance laws use

different inputs, and can have different requirements on the final desired state. For instance,

for soft landing the final velocity is zero, or for some missions a particular total mission time

may be specified.

Classical guidance laws were the first to be studied, starting with proportional navigation

(PN). [1] Also called parallel navigation, PN guidance is based on physical intuition, and in

fact animals are observed to use it to pursue prey. [2] Extensions of PN guidance are possible

when more information about the target’s acceleration is known. More sophisticated predictive

guidance is also possible for spacecraft in orbit, either based on solving Lambert’s problem, a

well-known orbital mechanics problem, or based on finding a state transition matrix that relates

the current relative position of the spacecraft to the estimated future relative position. [3]

Further refinement is possible with optimal guidance laws. Such laws are “optimal” in that
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they can be shown to minimize some quantity of interest, such as control effort used (called

the performance index). The classical guidance laws are special cases of optimal guidance laws,

with some approximations or simplifications.

Chapter 2 provides a review of the guidance literature, and describes several guidance

laws as applied to asteroid intercept and rendezvous. This chapter summarizes guidance law

research done at the ADRC. The so-called “ZEM/ZEV” (Zero-Effort Miss/Zero-Effort Velocity)

feedback guidance algorithm, first described in Ref. [4], is introduced. This guidance law is

studied in detail in the next two chapters.

1.2 Optimal Guidance

Before describing ZEM/ZEV guidance, a brief discussion of optimal guidance is in order.

The optimal laws described so far are “closed-loop” optimal feedback laws. This means that

the guidance laws generate thruster commands based only on current state information, and

possibly some knowledge of the system dynamics. This contrasts with “open-loop” optimal

guidance, which uses a computer to find the best control history for the entire mission.

Closed-loop feedback has advantages including computational simplicity and robustness in

the presence of disturbances. Disadvantages include that closed-loop laws will in general not

minimize the performance index, and that some constraints, such as remaining above the surface

when landing, are difficult to enforce. Open-loop laws will find the best performance index,

but the solution must be tracked somehow, and may need to be recomputed. A closed-loop

guidance law that achieves similar performance to open-loop is thus desirable.

1.3 ZEM/ZEV Feedback Guidance

The ZEM/ZEV algorithm was first described in [4]. It is a further generalization of the

optimal guidance laws, which is conceptually simple while maintaining the advantages of feed-

back guidance. The law performs well for many applications, and with some refinements can

achieve near-optimal performance for many missions.

The Zero-Effort Miss distance, or ZEM, is defined as the amount by which the spacecraft
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will miss the target if no further accelerations are applied. Driving this quantity to zero means

the spacecraft will hit the target. The Zero-Effort Velocity error, or ZEV, is a similar measure

for the velocity. If there is a required final velocity (often zero for soft landing or rendezvous),

driving the ZEV to zero means a successful mission. With both the ZEM and ZEV defined in

terms of the desired final state, it is reasonable to use them as input to the guidance law.

Chapter 3 describes the ZEM/ZEV feedback guidance algorithm, then shows its use in a

variety of applications. The applications shown are missile intercept, asteroid orbital opera-

tions, orbit transfer, and orbit raising. The ballistic missile intercept example considers only

ZEM guidance, and is included to put the new guidance law in terms of a familiar, well-studied

problem. The orbital operations example includes a discussion of finding the optimal mission

time, as well as an extension of the ZEM/ZEV law to command landing somewhere on a given

surface, rather than at a point. The orbit transfer example shows ZEM/ZEV guidance for a

highly nonlinear system. The orbit raising example shows an interesting case where the ZEV

is used, but not the ZEM. This example also introduces the idea of using a set of waypoints as

intermediate steps to improve performance.

Chapter 4 describes using the ZEM/ZEV feedback guidance algorithm for a pinpoint Mars

landing. With constraints on the problem, including maximum engine thrust and a constraint

to maintain positive altitude, the ZEM/ZEV algorithm is modified. Modifications discussed

include adaptively changing the mission time to meet constraints, and using optimization soft-

ware to find one waypoint for the spacecraft to reach, then using the closed-loop ZEM/ZEV

algorithm to complete the landing. The waypoint-optimized ZEM/ZEV algorithm is shown to

achieve near-optimal performance while maintaining the advantages of feedback control.
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CHAPTER 2. Spacecraft Guidance Algorithms for Asteroid Intercept and

Rendezvous Missions

This chapter presents a comprehensive review of spacecraft guidance algorithms for as-

teroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is

reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback

guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Op-

timal feedback guidance laws satisfying various terminal constraints are also discussed. Finally,

the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) dis-

tance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback

guidance laws can be easily applied to real asteroid intercept and rendezvous missions. How-

ever, differing mission requirements and spacecraft capabilities will require continued research

on terminal-phase guidance laws.

2.1 Introduction

Acknowledgement of the threat to planet Earth from the impact of an asteroid or comet has

led to increased interest in studying asteroid intercept and rendezvous missions. In addition

to responding to a threatening asteroid, scientific missions to asteroids and other small bodies

are of interest. NASA’s Deep Space 1 and Deep Impact missions, and JAXA’s Hayabusa

mission, are examples of flyby, intercept/impact, and rendezvous, respectively. The differing

mission requirements and spacecraft capabilities will require continued study on terminal-phase

guidance laws.

This chapter will review a number of different feedback guidance laws, starting with simple

laws to enable intercept, then going through more sophisticated laws, including laws with
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specified terminal conditions, and optimal feedback guidance laws. Simulation results are

shown, proving the practical effectiveness of such feedback guidance laws.

Proportional navigation (PN) guidance is one of the earliest known feedback guidance laws.

Zarchan [1] describes PN guidance, as well as a method of augmenting it when acceleration

characteristics of the target are known or can be assumed. These feedback guidance laws can

be implemented with on-off thrusters using a simple Schmitt trigger or other pulse-modulation

devices as described in Wie [5]. Zarchan [1] also describes predictive guidance for targets

whose primary acceleration is due to a gravitational field. This is based on Lambert’s theorem.

Linearized predictive guidance is possible, based on the state-error transition matrix described

by Vallado [6].

Gil-Fernández et al. [7, 8] describe various terminal-phase guidance laws of a kinetic im-

pactor as applied to the European Space Agencys Don Quijote mission (now canceled). This

work was continued in more detail by Hawkins et al. [9].

Much work has been done on the problem of commanding intercept at a specified impact

angle. Some of the earliest work led to guidance laws with strict limits on initial conditions [10].

Since then, a number of different laws with different advantages have been proposed. Various

guidance laws exist that do not require the time-to-go [11] that allow for significant target

maneuvers [12] and that can be used during hypersonic flight [13]. Linear-quadratic control

laws have been derived in [14], and guidance laws based on classical proportional navigation are

described in [15]. Guidance laws have been derived to follow a circular path to the target [16]

and to establish the desired end-of-mission geometry early on [17]. Hawkins and Wie [18]

investigated modified PN guidance laws for asteroid intercept with terminal velocity directional

constraints.

Bryson and Ho [19] discussed optimal feedback control laws for a simple rendezvous problem,

considering both free terminal velocity and constrained-terminal velocity. They also discussed

the relationship between optimal feedback control and proportional navigation guidance. Bat-

tin [3] also discussed an optimal terminal-state vector control for the orbit control problem,

directly compensating for the known disturbing gravitational acceleration. D’Souza [20] fur-

ther examined an optimal control algorithm in a uniform gravitational field, and developed a
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computational method to determine the optimal time-to-go.

Guo et al. [21] found three different optimal control laws for certain constraints on terminal

conditions. All three laws require the terminal position to be specified, while the terminal

velocity can be fully specified, free, or constrained along a particular direction. Hawkins et

al. [22] compared these guidance laws with PN-based guidance laws.

Ebrahimi et al. [4] proposed a robust optimal sliding mode guidance law for an exoat-

mospheric interceptor, using fixed-interval propulsive maneuvers. In this paper, gravity was

considered to be an explicit function of time. One major contribution of Ebrahimi et al. was the

new concept of the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-

miss (ZEM) distance. The ZEV is the velocity error at the end of the mission if no further

control accelerations are imparted. Furfaro et al. [23] later employed the ZEM/ZEV concept to

construct two classes of non-linear guidance algorithms for a lunar precision landing mission.

Guo et al. [24, 25] showed that in a uniform gravitational field, the ZEM/ZEV logic is

basically a generalized form of various well-known optimal feedback guidance solutions such as

intercept or rendezvous, terminal guidance, and planetary landing. A Mars landing example,

originally described by Açıkmeşe and Ploen [26] is investigated in [24, 25]. In some cases

ZEM/ZEV guidance can be improved by introducing a number of waypoints. Details are given

in [24, 25] on how to practically compute such waypoints in real time. Finally, the ZEM/ZEV

concept was also generalized to other feedback guidance problems in [24, 25].

2.2 Mathematical modeling

The target asteroid can be modeled as a point mass in a standard heliocentric Keplerian

orbit, as follows:

ṙT = vT

v̇T = g (2.1)
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where rT and vT are the position of the velocity vectors of the target and g is the gravitational

acceleration due to the sun, expressed as

g = −µ�r

r3
(2.2)

where µ� is the solar gravitational parameter. Similarly, the motion of the spacecraft is de-

scribed by

ṙS = vS

v̇S = g + a (2.3)

where rS and vS are the position of the velocity vectors of the spacecraft and g is again the

gravitational acceleration due to the sun, and a is the control acceleration provided by the

control thrusters. In this dissertation, a boldfaced symbol indicates a column matrix of a

physical vector expressed in a chosen inertial reference frame.

In general, we have g = g (r, t) . For some guidance problems the gravitational accelera-

tion can be considered constant or negligible, but for asteroid terminal guidance missions, the

gravitational acceleration must be considered a nonlinear function of position. There are some

other disturbing accelerations that act on the spacecraft, such as radiation pressure and the

gravitational acceleration due to the asteroid. However, intercept and rendezvous missions to

small asteroids can neglect these.

The relative position of the spacecraft with respect to the target is then described by

r = rS − rT (2.4)

The equation of motion of the spacecraft with respect to the target becomes

r̈ = g + a (2.5)

where g represents the sum of apparent gravitational accelerations on the target, as follows:

g = −µ�
r3
S

rS +
µ�
r3
T

rT

= − µ�

|rT + r|3
(rT + r) +

µ�
r3
T

rT

∼= −
µ�
r3
T

r +
3µ�
r5
T

rT (rT · r) for r � rT (2.6)
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Figure 2.1 Coordinate system definition.

From Figure 2.1 it can be seen that

λ = tan−1 y

x
(2.7)

where λ is the line-of-sight (LOS) angle and (x, y) are the components of the relative position

vector along the inertial (X, Y ) coordinates. Differentiating this with respect to time gives

λ̇ =
xẏ − yẋ
r2

(2.8)

where λ̇ is the LOS rate and r =
√
x2 + y2. The rate of change of the distance between the

target and the spacecraft is the closing velocity, found by differentiating r with respect to time

as

Vc = −ṙ =
− (xẏ + yẋ)

r
(2.9)
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2.3 Guidance Laws

2.3.1 PN-based Feedback Guidance Laws

2.3.1.1 Classical Proportional Navigation (PN) Guidance

The first guidance law considered is the so-called proportional navigation (PN) guidance.

The PN guidance attempts to drive the LOS rate to zero by applying accelerations perpendic-

ular to the LOS direction. The PN guidance law is expressed as

a = nVcλ̇ (2.10)

where a is the acceleration command and n is the effective navigation ratio, a designer-tunable

parameter. [1] The navigation ratio is typically chosen between 3 and 5. The optimal value,

which will be derived and discussed in a later section, is 3. Larger values are chosen to provide

more robustness against disturbances and errors. This can be seen by inspecting Eq. 2.10.

Inaccurate estimates of the closing velocity or the LOS rate are equivalent to changing the nav-

igation ratio and using accurate closing velocity and LOS rate information. Large navigation

ratios will command unnecessarily large accelerations, while small navigation ratios risk com-

manding too little acceleration and missing the target. Thus a larger navigation ratio ensures

that measurement errors will not make the accelerations too small to achieve impact.

Because the acceleration commands are always perpendicular to the LOS, the PN law gives a

scalar value. The PN guidance acceleration command is then expressed in the inertial reference

frame as

a = nVcλ̇

− sinλ

cosλ

 (2.11)

The PN guidance law for steering the interceptor is also called constant-bearing guidance,

as it steers the interceptor in such a way that the LOS does not rotate. An interceptor using

PN guidance, on a perfect collision course, will maintain a constant bearing (i.e. λ̇ is zero).

When the interceptor is not on a collision course, the trajectory is not truly constant-bearing

for n <∞ . As the effective navigation ratio becomes very large, the LOS rate approaches zero

faster, at the expense of more commanded acceleration.
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The PN guidance law does not require the target or interceptor velocities to be constant,

nor does it require the external accelerations to be zero. For small deviations from constant

velocity and small external accelerations, the PN guidance law will still achieve intercept in a

feedback fashion. For the asteroid intercept scenario, the velocities are approximately constant,

and the external acceleration is due almost entirely to the sun, and can be accounted for as

described below.

2.3.1.2 Augmented PN Guidance

The basic PN guidance law can overcome target accelerations in a feedback fashion. As

can be seen from the equations for LOS rate and closing velocity Vc, Eqs. 2.8 and 2.9, the PN

guidance law uses only the position and velocity of the target, and is unable to take into account

target accelerations (if they exist). A guidance law which incorporates terms to account for the

target’s acceleration should be able to perform better than the basic PN guidance law. Since

the primary target accelerations are from the sun’s gravity, the target’s future accelerations are

known. An augmented proportional navigation guidance (APNG) law will now be discussed.

As with PNG, an easily tractable derivation will be given first, and optimality will be considered

in a later section.

From Figure 2.1, with a small-angle approximation, we have

r ∼= x ⇒ λ = tan−1 y

x
∼=
y

r
(2.12)

where y is the spacecraft-target distance perpendicular to the reference line (X-axis). Define

the mission time-to-go as

tgo = tf − t (2.13)

For a successful intercept mission, the separation at the end of the flight is zero, or r (tf ) = 0.

Integrating Eq. 2.9 gives

r = Vc (tf − t) = Vctgo (2.14)

Substituting Eq. 2.14 into Eq. 2.12 gives

λ ∼=
y

Vctgo
(2.15)
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Differentiating this expression gives

λ̇ ∼=
y + ẏtgo
Vct2go

(2.16)

Using this expression in the PNG law gives

a = nVcλ̇ ∼=
n (y + ẏtgo)

t2go
(2.17)

For PN guidance, we define the Zero-Effort-Miss (ZEM) distance as the separation between

the target and the interceptor at the end of the flight, absent any further control accelerations.

With no accelerations, the interceptor and target will continue on straight-line trajectories.

The components of the ZEM can thus be given as

ZEMx = x+ ẋtgo

ZEMy = y + ẏtgo (2.18)

The ZEM is a simplified prediction of future target-interceptor separation. PN guidance

commands are always applied perpendicular to the LOS, therefore only the component of the

ZEM that is perpendicular to the LOS can be accounted for in the augmented guidance law.

From trigonometry, this component is

ZEM⊥ = −ZEMx sinλ+ ZEMy cosλ (2.19)

The PNG law, Eq. 2.10, is now rewritten as

a = n
ZEM⊥
t2go

(2.20)

A constant acceleration can be added to the ZEM term. The linearized ZEM equation is

now

ZEM⊥ = y + ẏtgo +
1

2
aT t

2
go (2.21)

where aT is the apparent target acceleration as seen by the spacecraft. Substituting this into

Eq. 2.20, and using Eq. 2.17, gives

a = n
y + ẏt2go + 0.5aT t

2
go

t2go
= nVcλ̇+

n

2
aT (2.22)
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In general, for the asteroid terminal intercept scenario, the sun’s gravity is the primary

disturbing force that needs to be accounted for. The above augmented proportional navigation

guidance law can easily incorporate the effect of gravity. The APNG law issues commands

perpendicular to the LOS, and from the spacecraft’s point of view. Thus the acceleration term

needed is the relative solar acceleration perpendicular to the LOS. To begin, the components

of the gravity term for the target and the spacecraft are

gTx =
−µ�rTx
r3
T

gTy =
−µ�rTy
r3
T

gSx =
−µ�rSx

r3
S

gSy =
−µ�rSy

r3
S

(2.23)

The components perpendicular to the LOS are

gT⊥ = −gTx sinλ+ gTy cosλ

gS⊥ = −gSx sinλ+ gSy cosλ (2.24)

The target’s apparent acceleration perpendicular to the LOS, as seen by the spacecraft, is

g⊥ = gT⊥ − gS⊥ (2.25)

Substituting this equation into the APNG law, Eq. 2.22, gives

a = nVcλ̇+
n

2
g⊥ (2.26)

In the inertial reference frame, the APNG law is expressed as

a = nVcλ̇

− sinλ

cosλ

+
n

2
g⊥

− sinλ

cosλ

 (2.27)

2.3.1.3 Pulsed Guidance

For simple asteroid intercept, the terminal velocity is not specified, and is assumed to be

the closing velocity for PNG and APNG. The PNG and APNG laws assume that continuously
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variable thrust is available. For thrusters with no throttling ability, a different approach to

guidance laws is needed. Two approaches to formulating guidance laws for fixed-thrust-level

(on-off) guidance laws are PN-based guidance laws and predictive guidance laws.

The PNG law continuously generates acceleration commands to achieve intercept. Due to its

feedback nature, PNG will continue to generate guidance commands until intercept is achieved.

A special case of PNG occurs when the interceptor is on a direct collision course. When this

is true, the guidance commands will be zero. When using PNG logic, then, an acceleration

command of zero means that the interceptor is instantaneously on a direct collision course.

This fact can be exploited to use PNG logic for constant-thrust engines.

Pulsed PNG (PPNG) logic computes the required acceleration commands from PNG, but

applies them in continuous-thrust pulses. PPNG will “overshoot” the amount of correction

specified by PNG, until the PNG command is zero. At that point, the interceptor is instan-

taneously on a collision course, and the engines are turned off. If there were no external

accelerations or disturbances, the interceptor would continue on an interception course. Be-

cause of the acceleration due to the sun, this will not be the case, and a further engine firing will

be required later as the interceptor “drifts” further and further from the straight-line collision

path.

Two approaches to determining when to fire engines are threshold methods and timed

methods. Both methods will be described, as well as advantages and disadvantages associated

with each.

The threshold method can employ the so-called Schmitt trigger or other pulse-modulation

scheme. [5] Using a Schmitt trigger, acceleration commands are calculated by the PN guidance

law as before. The trigger commands the divert thrusters to turn on once the commanded

acceleration exceeds a certain magnitude, chosen by the designer, and off when the commanded

acceleration reaches a designer-chosen cutoff. With traditional PN guidance the LOS rate

must reach zero for a successful intercept. Therefore the second cutoff is typically selected as

zero. The trigger control logic for pulsed proportional navigation guidance (PPNG) is shown

in Figure 2.2. The Schmitt trigger can also be used for augmented PN guidance, giving an

augmented pulsed proportional navigation guidance (APPNG).
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Figure 2.2 Scmitt trigger logic.

The timed method is similar to the threshold method in that the PNG commands are still

calculated, and applied with constant thrust. As the name suggests, the difference is that

the timed method uses predetermined firing times to turn on the thrusters. The designer

must choose the firing schedule. Typically at least three firings are required. An early firing,

near or at the beginning of the terminal mission phase, is used to overcome most of the orbit

injection errors. The final firing comes shortly before impact, with enough lead time to allow

the thrust command to complete (e.g. the commanded acceleration reaches zero), but close

enough to impact that only minimal further errors accumulate. Additional intermediate firings

provide robustness. As with the Schmitt trigger, the timed method turns off thrusters when

the commanded thrust level is zero.

The advantage of these methods is the ability to use constant-thrust on-off engines. The

Schmitt trigger has the same feedback advantages as PNG, in that it will issue commands

when the spacecraft is not on an intercept course. A disadvantage of the Schmitt trigger is that

the designer must select the magnitude to turn on the thrusters. Too small a magnitude risks

excessive on-off cycles (chatter) for the engines, while too large a magnitude risks missing the

target by failing to issue commands at all. An advantage of the timed method is that the total

number of on-off cycles is known in advance and can be kept small. A disadvantage is that the

timed method might not issue commands even when the calculated PNG commands are large.

The pulsed PN guidance law described in this section was applied to an asteroid intercept

problem in [9]. A fictitious 300-m asteroid is assumed to be in a circular orbit with a radius

of one astronomical unit. An interceptor with closing velocity of 10.4 km is displaced 350
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Figure 2.3 Trajectories, line-of-sight angle, commanded acceleration, and applied acceleration

of the pulsed PN guidance law applied to an asteroid intercept problem [9].

kilometers out radially. It is displaced 24 hours travel time ahead of the target in the tangential

direction. In the absence of guidance commands, the assumed initial conditions will result in

a miss distance of 88.29 km. A 1000-kg interceptor with two 10-N divert thrusters is assumed.

Simulation results summarized in Figures 2.3 and 2.4 indicate that the pulsed PN guidance

system performs well. More detailed discussions of this asteroid intercept example problem can

be found in [9].

2.3.2 Predictive Feedback Guidance Laws

A different class of guidance laws, which also use on-off pulses, are the predictive guidance

schemes. Two types of predictive guidance laws are Lambert guidance and time-varying state

transition matrix (STM) guidance. Both types of predictive guidance laws will command a

required velocity, vreq. Subtracting the current velocity v from this gives the velocity to be

gained, or ∆v. The simplest way to generate acceleration commands is to align the thrust

vector with the ∆v vector. When the desired velocity is achieved, ∆v is zero and the engine
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Figure 2.4 Closing velocity, line-of-site rate, ∆v usage, and position error of the pulsed PN

guidance law applied to an asteroid intercept problem [9].

is cut off. The velocity to be gained is

∆v = vreq − v (2.28)

For a given acceleration magnitude a, the direction of the thrust acceleration should be

aligned with the velocity-to-be-gained vector, that is

a =
∆v

‖∆v‖
(2.29)

2.3.2.1 Lambert Guidance

The well-known Lambert’s Theorem, a two-point boundary value problem (TPBVP), states

that “the orbital transfer time depends only upon the semimajor axis, the sum of the distances

of the initial and final points of the arc from the center of force, and the length of the chord

joining these points.” [3] Mathematically, Lambert’s theorem is expressed as

t2 − t1 = f (r1 + r2, c, ā) (2.30)
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where t2 − t1 is the time of flight, c = ‖r2 − r1‖, and ā is the semi-major axis of the transfer

orbit. The solution of Lambert’s problem determines the required transfer orbit from position

r1 to r2 in time t2 − t1. The current position of the spacecraft is known, and the desired

time-of-flight can be calculated. Recall Eq. 2.14

r = Vc (tf − t) = Vctgo

The time-to-go is thus calculated as

tgo =
r

Vc
(2.31)

The position of the target at the end of the flight time can be estimated by numerically

integrating the target’s current position and velocity over the time-to-go. Many different Lam-

bert solvers have been developed that take the position vectors r1 and r2, and the time of flight

as inputs, and give parameters of the transfer orbit as output, including v1 and v2, the velocity

of the transfer orbit at the initial and final times. The initial velocity is the required velocity

from the Lambert solver routine, vLambert. The required velocity is thus

vreq = vLambert = v1 (2.32)

Comparing with Eq. 2.28 gives

∆v = vLambert − v (2.33)

The acceleration command is explicitly given as

a = a
vLambert − v

‖vLambert − v‖
(2.34)

The Lambert guidance routine requires a firing schedule to decide when to perform engine

maneuvers. In principle, one Lambert guidance engine burn should suffice to achieve impact. In

practice, multiple engine burns should be used to account for errors in calculating and applying

velocity corrections. Similarly to PPNG with timed firings, a minimum of three burns should

be used.
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2.3.2.2 Time-varying State Transition Matrix (STM)

Impulsive guidance laws can also be formulated using the state transition matrix concept.

In this approach, the target asteroid’s orbit is considered to be a known, or reference, orbit.

The interceptor’s orbit is considered to be a perturbation from this reference orbit. The goal

is then to issue guidance commands that will drive the position perturbation to zero.

Recall the dynamical equations of motion for the target asteroid

ṙT = vT

ṙT = vT

gT = −µ�rT
r3
T

In this section, the standard notation of orbital perturbation theory will be followed. This

notation differs from that used in the rest of the dissertation, but is used because it is more

germane to the problem. The target state is the reference state, x∗. The spacecraft state, x, is

the target state plus some deviation δx, defined as

x = x∗ + δx (2.35)

where

x ,

rS

vS

 , x∗ ,

rT

vT

 (2.36)

When components of the spacecraft state are needed, they will be given in orthogonal

directions denoted with 1 and 2. The subscript S will be dropped for notational simplicity,

but it is important to note that these are components of the spacecraft state, and not the

spacecrafts relative state. The spacecraft state vector x is then defined as

x =



r1

r2

v1

v2


(2.37)
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Consider the target asteroid trajectory to be a known, or reference, trajectory. The equa-

tions of motion for the spacecraft trajectory are, in general, a function of both state and time

as described by

ẋ (t) = f (x, t) (2.38)

More explicitly, we have 

ṙ1

ṙ2

v̇1

v̇2


=



f1

f2

f3

f4


=



v1

v2

−µ�r1
r3

−µ�r2
r3


(2.39)

Substituting Eq. 2.35 into Eq. 2.38 gives

ẋ = f (x, t) = f (x∗ + δx, t) (2.40)

Equation 2.40 is nonlinear, so it can be expanded in a Taylor series about x∗, as follows:

ẋ (t) = f (x∗, t) +

[
∂f

∂x

]
∗
δx (t) + . . . (2.41)

Substituting the time derivative of Eq. 2.35 into Eq. 2.41 gives

ẋ∗ (t) + δẋ (t) = f (x∗, t) +

[
∂f

∂x

]
∗
δx (t) + . . . (2.42)

Recall that the target orbit is considered to be the known reference orbit. As such, the

position and velocity are known for any given time. The function f and the state x can

therefore be considered functions of time alone. The equation of motion for the state deviation

is then simply expressed as

δẋ (t) = F (t) δx (t) (2.43)

where F is the partial derivative term in Eq. 2.41, which is the Jacobian of the function f

evaluated at x∗ defined as

F (t) =

[
∂f (t)

∂x (t)

]
∗

=



0 0 1 0

0 0 0 1

− µ
r3

+
3µr21
r5

3µr1r2
r5

0 0

3µr1r2
r5

− µ
r3

+
3µr22
r5

0 0


(2.44)
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where µ� is replaced with µ for notational simplicity. Recall that the acceleration due to the

sun’s gravity, Eq. 2.2, is

g = −µr

r3

The Jacobian of the gravitational force vector is often called the gravity-gradient matrix

defined as follows:

G (t) =
∂g

∂r
=

− µ
r3

+
3µr21
r5

3µr1r2
r5

3µr1r2
r5

− µ
r3

+
3µr22
r5

 (2.45)

Observe that this corresponds to the bottom-left submatrix of F, which can be written as

a block matrix

F (t) =

 0 I

G (t) 0

 (2.46)

where I and 0 are the identity matrix and the zero matrix of conformal (in this case 2x2) size.

The general solution to Eq. 2.43 above can be expressed as

δx (t) = Φ (t, t0) δx0 (2.47)

where δx0 = δx (t0). Differentiating this gives

δẋ (t) = Φ̇ (t, t0) δx0 (2.48)

Substituting Eq. 2.48 into Eq. 2.43, and using Eq. 2.47, we have

Φ̇ (t, t0) δx0 = F (t) Φ (t, t0) δx0 (2.49)

This must be true for any δx0, thus

Φ̇ (t, t0) = F (t) Φ (t, t0) (2.50)

with initial conditions given by

Φ (t, t0) = I (2.51)

Equation 2.50 can be numerically integrated, starting with the initial conditions given in

Eq. 2.51, to find the current estimate of the state transition matrix. However, for use in

generating a guidance law for asteroid intercept, it is desirable to avoid numerical integration.
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As will be discussed in a later section, if a numerical integration is to be performed, it is

better to simply integrate the equations of motion directly. It is desirable to have an analytical

expression of Φ for use in guidance laws.

Consider the expression for the state error. Expanding this into a Taylor series gives

δx (t) = δx0 + δẋ0∆t+
1

2!
δẍ0∆t2 + . . . (2.52)

Recalling Eq. 2.43, and taking its derivatives, gives

δẋ0 = F (t) δx0

δẍ0 = F (t) δẋ0 = F (t)2 δx0 (2.53)

Comparing Eqs. 2.47 and 2.52 gives

δx =

[
I + F (t) ∆t+

1

2
F (t)2 ∆t2 + . . .

]
δx0 = Φδx0 (2.54)

Evaluating the expression in brackets gives the state-error transition matrix as

Φ =



1 +
3µ∆t2r21

2r50
− µ∆t2

2r50

3µ∆t2r1r2
2r50

∆t 0

3µ∆t2r1r2
2r50

1 +
3µ∆t2r22

2r50
− µ∆t2

2r30
0 ∆t

3µ∆tr21
r50
− µ∆t

r30

3µ∆tr1r2
r50

1 +
3µ∆t2r21

2r50
− µ∆t2

2r30

3µ∆t2r1r2
2r50

3µ∆tr1r2
r50

3µ∆tr22
r50
− µ∆t

r30

3µ∆t2r1r2
2r50

1 +
3µ∆t2r22

2r50
− µ∆t2

2r30


(2.55)

The state-error transition matrix can now be partitioned as

Φ =

Φ1 Φ2

Φ3 Φ4

 (2.56)

where

Φ1 = Φ4 = I +
1

2
G∆t2 =

1 +
3µ∆t2r21

2r50
− µ∆t2

2r50

3µ∆t2r1r2
2r50

3µ∆t2r1r2
2r50

1 +
3µ∆t2r22

2r50
− µ∆t2

2r30

 (2.57)

Φ2 = I∆t =

∆t 0

0 ∆t

 (2.58)

Φ3 = G∆t =

3µ∆tr21
r50
− µ∆t

r30

3µ∆tr1r2
r50

3µ∆tr1r2
r50

3µ∆tr22
r50
− µ∆t

r30

 (2.59)
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The simplest form of intercept guidance using the state transition matrix uses only the

position information to generate a ∆v command. The first-order approximation for the final

miss vector, absent any further acceleration commands, is found as

r (tf ) ∼= r̃tf = Φ1 (t) r (t) + Φ2 (t) v (t) (2.60)

The second term on the right-hand side is negligible for small changes in closing velocity,

giving

r (tf ) ∼= r̃tf = Φ1 (t) r (t) (2.61)

Consider driving the final relative position to zero. For linearized dynamics, there are no

external accelerations, so we have

0 = r (tf )−
r (tf )

∆t

∼= r (t0) + v (t0)−
r (tf )

∆t
∆t

= r (t0) + v (t0) ∆t+ vSTM∆t (2.62)

where vSTM is seen to be the velocity to be gained to ensure impact.

For small changes in relative velocity, we have

ṙ (tf ) ∼= ṙ (t0)

⇒
r (tf )

∆t
∼= r̂ (tf ) ṙ (t0) (2.63)

The velocity change to be imparted becomes

∆v = vSTM − v

= r̂ (tf ) ṙ (t0)− v (2.64)

The acceleration command vector is given, similar to Lambert guidance, as

a = a
vSTM − v

‖vSTM − v‖
(2.65)

Using the gravity gradient matrix from Eq. 2.45, we can show that

r (tf ) ≈ ∆t2

2
G (t) r (t) + r (t) (2.66)
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2.3.2.3 Predictive Impulsive Guidance

For practical implementation, we adopt the following definitions

Vc (t) = ṙ (t)

Λ (t) =
r (t)

r (t)

Λc (t) =
r̃ (tf )

r̃ (tf )

tgo = ∆t (2.67)

Substituting these into the guidance law in Eq. 2.64 gives the predictive impulsive guidance

law

∆v = VcΛc − v (2.68)

2.3.2.4 Kinematic Impulsive Guidance

In terms of the line-of-sight angle, we have

Λ (t) =

cosλ (t)

sinλ (t)


Λ̇ (t) =

−λ̇ sinλ (t)

λ̇ cosλ (t)

 (2.69)

The relative position can also be approximated as

r (t) ≈ VctgoΛ (t) (2.70)

and we obtain

r (tf ) ≈
Vct

3
go

2
G (t) Λ (t) + VctgoΛ (t) (2.71)

The relative velocity can be approximated as a component along the LOS and a component

perpendicular to the LOS, described as

v (t) ≈ VctgoΛ̇ (t) + VcΛ (t) (2.72)

Substituting Eq. 2.72 into Eq. 2.68 results in the kinematic impulsive guidance law of the

form

∆v = Vc

(
Λc − tgoΛ̇−Λ

)
(2.73)
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2.4 Optimal Feedback Guidance Algorithms

For some applications it is desirable to specify terminal conditions on the interceptor. For

intercept, the terminal position is by definition zero. The terminal velocity, though, may have

direction or magnitude requirements, depending on the mission. Optimal feedback guidance

laws can be used to achieve intercept, with the option of specifying the final velocity.

Three different optimal feedback guidance laws are considered for asteroid intercept and

rendezvous. The various forms of proportional navigation and predictive guidance laws compute

an estimated mission time-to-go based on relative position and velocity. This computed time-

to-go is used as an input for the predictive laws, and is available as an output of the proportional

navigation laws. In contrast, the optimal feedback guidance laws studied in this dissertation

use a specified time-to-go as a mission parameter, and compute the acceleration commands

needed to achieve intercept at this pre-determined time.

When the final impact velocity vector (both impact velocity and impact angle) is specified,

the terminal velocity is constrained. This leads to the constrained-terminal-velocity guidance

(CTVG) law. If the final velocity is free, the free-terminal-velocity guidance (FTVG) law

results, as discussed in [24, 25]. When only the approach angle is commanded, the velocity

vector component along the desired final direction is free, while the perpendicular components

are constrained to be zero. A combination of FTVG along the impact direction and CTVG

along the perpendicular directions allows pointing of the final velocity vector, referred to as

intercept-angle-control guidance (IACG).

2.4.1 Constrained-Terminal-Velocity Guidance (CTVG)

Consider an optimal control problem for minimizing the integral of the acceleration squared,

formulated as

J =
1

2

∫ tf

t0

aTa dt (2.74)

subject to ṙ = v and v̇ = g + a with the following boundary conditions

r (t0) = r0 r (tf ) = rf

v (t0) = v0 v (tf ) = vf

(2.75)
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The Hamiltonian function is given by

H =
1

2
aTa + pTr v + pTv (g + a) (2.76)

where pr and pv are co-state vectors associated with the position and velocity vectors, re-

spectively. In general, for a terminal-phase guidance problem gravity is a function of position

and time, g = g (r, t). Using such a function will not allow a simple closed-form solution to

the optimal control problem. For the class of terminal guidance problems considered here, the

gravitational acceleration is approximately constant for the duration of the terminal phase.

Therefore a constant gravitational acceleration is assumed to permit a closed-form solution.

The co-state equations and control equation imply that

ṗr = −∂H
∂r

= 0 (2.77)

ṗv = −∂H
∂v

= −pr (2.78)

∂H

∂a
= 0 ⇒ a = −pv (2.79)

For fixed terminal conditions, the co-states at tf are non-zero. Define tgo = tf − t as the

time-to-go before arrival at the terminal state, and let and pr (tf ) and pv (tf ) describe the

values of pr and pv at tf , respectively. Integrating the co-state equations yields

pr = pr (tf ) (2.80)

pv = tgopr (tf ) + pv (tf ) (2.81)

Substituting Eq. 2.81 into Eq. 2.79 yields the optimal control solution as

a = −tgopr (tf )− pv (tf ) (2.82)

The states can thus be expressed as

v =
t2go
2

pr (tf ) + tgopv (tf )− tgog + vf (2.83)

r = −
t3go
6

pr (tf )−
t2go
2

pv (tf ) +
t2go
2

g − tgovf + rf (2.84)
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Combining Eq. 2.83 and Eq. 2.84 leads to

pr (tf ) =
6 (v + vf )

t2go
+

12 (r− rf )

t3go
(2.85)

pv (tf ) = −
2 (v + 2vf )

tgo
−

6 (r− rf )

t2go
+ g (2.86)

Finally, the optimal feedback control law with specified rf , vf , and tgo, the CTVG law, is

obtained as

a =
6 [rf − (r + tgov)]

t2go
−

2 (vf − v)

tgo
− g (2.87)

or

a =
6 [rf − (r + tgovf )]

t2go
+

4 (vf − v)

tgo
− g (2.88)

2.4.2 Free-Terminal-Velocity Guidance (FTVG)

For the case when the terminal velocity is free, the boundary conditions for unconstrained

final velocity give pv (tf ) = 0, thus Eq. 2.81, pv becomes

pv = tgopr (tf ) (2.89)

The acceleration command is then given as

a = −pv = −tgopr (tf ) (2.90)

Accordingly we have

v =
t2go
2

pr (tf )− tgog + vf (2.91)

r = −
t3go
6

pr (tf ) +
t2go
2

g − tgovf + rf (2.92)

Solving the above equations results in

pr (tf ) = − 3

t3go

(
rf − r− vtgo −

t2go
2

g

)
(2.93)

The terminal velocity can be expressed in terms of time-to-go and system states after

substituting Eq. 2.93 into Eq. 2.91, as

vf =
3

2tgo
(rf − r)− 1

2
v +

1

4
tgog (2.94)
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which is a function of time with given initial position and velocity vectors.

Substituting Eq. 2.93 into Eq. 2.90, the FTVG law is obtained as follows

a =
3

t2go
(rf − r)− 3

tgo
v − 3

2
g (2.95)

2.4.3 Intercept-Angle-Control Guidance (IACG)

Both CTVG and FTVG command the final position. The terminal velocity vector can

be commanded, as in CTVG, or free as in FTVG. Consider an orthogonal coordinate system

with the first component (e1) in the direction of the desired terminal velocity, and the other

two components (e2 and e3) perpendicular to this direction. The acceleration vector can be

expressed as

a = a1e1 + a2e2 + a3e3 (2.96)

The performance index then becomes simply

J =
1

2

∫ tf

t0

(
a2

1 + a2
2 + a2

3

)
dt (2.97)

The position, velocity, and gravity vectors can also be expressed as

r = a1e1 + r2e2 + r3e3

v = a1e1 + v2e2 + v3e3

g = a1e1 + g2e2 + g3e3 (2.98)

In order to achieve impact along the e1-direction, it is required that v1 is free, and v2 and

v3 are both zero. The IACG algorithm combines the CTVG and FTVG algorithms as follows:

(2.99)
a =

(
3 (rf1 − r1)

t2go
− 3v1

tgo
− 3g1

2

)
e1 +

(
3 (rf2 − r2)

t2go
− 3v2

tgo
− 3g2

2

)
e2

+

(
6 (rf3 − r3)

t2go
− 4v3

tgo
− 3g3

)
e3

The algorithm can also be expressed in terms of vectors r, rf , v, and g as

(2.100)
a =

(
3e1e

T
1 + 6e2e

T
2 + 6e3e

T
3

) rf − r

t2go
−
(
3e1e

T
1 + 4e2e

T
2 + 3e3e

T
3

) v

tgo

−
(

3

2
e1e

T
1 + 4e2e

T
2 + 4e3e

T
3

)
g
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It is important to note that the IACG guidance law does not impose a unique direction

on the final velocity. Ultimately the velocity is only constrained to be parallel to the specified

direction. The final velocity direction will depend on the initial conditions. If the spacecraft

is initially moving toward the target in the e1 direction, that is (rf1 − r1) v1 > 0 , then the

intercept will be in the specified direction. Otherwise, when (rf1 − r1) v1 ≤ 0, the spacecraft

will intercept opposite the specified direction.

2.4.4 Relationship Between PNG and Optimal Feedback Guidance

As mentioned in the section on PNG, the optimal value for the navigation constant is 3.

To show this, first consider a two-dimensional problem with

rf − r = [x y]T

−v = [ẋ ẏ]T (2.101)

λ = tan−1 y

x
(2.102)

where λ is the LOS angle as before. Define R = |rf − r| as the distance from the spacecraft to

the target along the LOS. The closing velocity and time-to-go are given by

Vc = −Ṙ (2.103)

tgo =
R

Vc
(2.104)

The optimal FTVG algorithm thus becomes

a = 3Vcλ̇

− sinλ

cosλ

− 3

2
g (2.105)

This is the augmented PNG logic, with an effective navigation ratio of 3.

Controlling the direction of the final velocity is equivalent to controlling the final impact

angle, but not the velocity. [19] Since the PNG laws only command control perpendicular to

the LOS, the velocity along the LOS is free. For the case with small LOS angles, it can be

shown that IACG becomes PNG with impact angle control

a = 4Vcλ̇+
2Vc (λ− λf )

tgo
− g (2.106)

where λf is the desired final impact angle.
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2.4.5 Calculation of Time-To-Go

The basic PNG laws do not specify the time-to-go, and can estimate it based on current

conditions. In contrast, the optimal feedback guidance laws are derived for a fixed flight time.

The time-to-go appears in the acceleration commands. For some missions it may be desirable

to specify the mission time. However, for asteroid intercept it is often not necessary to achieve

impact or rendezvous at a particular time, and a difference of a few seconds or minutes is not

significant to the overall mission.

Consider, for example, an interceptor that is already on a collision course with the target.

Proportional navigation will not issue any commands, and intercept will occur based on the

interceptor’s velocity relative to the target. If one of the optimal guidance laws is used with

a different time-to-go, intercept will still occur, but the spacecraft will spend unnecessary fuel

either speeding up or slowing down the spacecraft along the LOS direction. It is natural to

ask, then, if there is an optimal choice for time-to-go.

For both the CTVG and FTVG laws, under certain conditions a local minimum for the

performance index with respect to mission time is possible. This condition will be derived

next. It is important to note that the optimal feedback control laws minimize the integral of

acceleration squared, and not ∆v or fuel use.

2.4.5.1 CTVG

As was the case when deriving the CTVG law, the gravitational acceleration is assumed to

be constant to permit a closed form solution. The transversality condition is given by

∂J∗

∂tgo
=
∂J∗

∂tf
= H = constant on the optimal trajectory

= 0 when tf is free (2.107)

The Hamiltonian function of the form

H = −1

2
aTa (a + 2g) + pTr v (2.108)
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becomes

(2.109)
H =

1

t4go

[
t4go
(
gTg + Γ

)
− 2t2go

(
vTv + vTf v + vTf vf

)
+ 12tgo (rf − r)T (v + vf )

− 18 (rf − r)T (rf − r)
]

Equation 2.107 then gives

t4go
(
gTg + Γ

)
− 2t2go

(
vTv + vTf v + vTf vf

)
+ 12tgo (rf − r)T (v + vf )− 18 (rf − r)T (rf − r) = 0

(2.110)

which can be solved for the time-to-go. Note that the first term in the above equation contains

the fourth power of the time-to-go, and the unknown parameter Γ. This first term is also the

only term where the gravitational acceleration appears. By assuming that g is negligible, and

setting Γ to zero, Eq. 2.110 simplifies to

t2go
(
vTv + vTf v + vTf vf

)
− 6tgo (rf − r)T (v + vf ) + 9 (rf − r)T (rf − r) = 0 (2.111)

The time-to-go can be calculated as follows:

tgo =

 τ B2 − 4AC > 0 and B < 0

no solution otherwise
(2.112)

where

τ =
−B −

√
B2 − 4AC

2A

A =
(
vTv + vTf v + vTf vf

)
≥ 0

B = 6 (rf − r)T (v + vf )

C = 9 (rf − r)T (rf − r)

and τ is the smaller positive solution of Eq. 2.111, leading to a local minimum of J∗. The larger

solution corresponds to a local maximum of J∗. J∗ decreases monotonically with respect to tgo

for values beyond the larger solution. When there is no solution, the partial derivative of J∗ is

always negative, thus increasing tgo leads to decreasing J∗.
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2.4.5.2 FTVG

A similar procedure can be used to compute the time-to-go for the FTVG law. The condition

corresponding to Eq. 2.110 is

(2.113)t4go
(
gTg + Γ

)
− 4t2go

[
vTv− (rf − r)T g

]
+ 16t2go (rf − r)T v− 12 (rf − r)T (rf − r) = 0

When g = 0 and Γ = 0, this becomes

t2gov
Tv − 4t2go (rf − r)T v + 3 (rf − r)T (rf − r) = 0 (2.114)

Let θ be the angle between the vectors v and (rf − r). The solution of Eq. 2.113 is obtained

as

τ =
2|rf − r|
|v|

(
cos θ −

√
cos2 θ − 3/4

)
; θ ∈ (−30◦, 30◦) (2.115)

There is a finite solution only when θ lies in the range (−30◦, 30◦).

There is no general way to derive an optimal time-to-go for IACG. Recall that IACG consists

of FTVG along the final impact velocity direction, and CTVG perpendicular to this. Typically,

then, there will be two different optimal times, and the true local minimum will be dependent

on the particular mission geometry.

2.4.6 ZEM/ZEV Feedback Guidance

In the preceding section, the optimal feedback guidance laws were discussed assuming a

uniform gravitational field (g = constant). If g is an explicit function of time, it is also possible

to derive the optimal CTVG and FTVG algorithms.

Let the zero-effort-miss (ZEM) be the position offset at the end of the mission if no more ac-

celeration is applied. Also let the zero-effort velocity (ZEV) be the end-of-mission velocity offset

with no acceleration applied. The dynamic equations of motion with no control acceleration

are

ṙ = v

v̇ = g (t) (2.116)
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These equations can be integrated to find the ZEV and ZEM as

ZEV = vf −
[
v +

∫ tf

t
g (t) dτ

]
(2.117)

ZEM = rf −
[
vtgo +

∫ tf

t
(tf − τ) g (τ) dτ

]
(2.118)

With the ZEM and ZEV defined as above, the ZEM/ZEV version of the CTVG law is

expressed as

a =
6

t2go
ZEM− 2

tgo
ZEV (2.119)

The FTVG law is expressed as

a =
3

tgo
ZEM (2.120)

As was the case for the optimal laws, the ZEM/ZEV laws are optimal for a specified flight

time. When a particular flight time is needed as a mission requirement, ZEM/ZEV laws can

be applied using that flight time. If the exact flight time is not important, some additional

analysis can be applied to find the optimal flight time. The optimal flight times found above

for CTVG and FTVG, for example, can be used as a starting point for the optimal flight time.

2.4.7 Estimating the ZEM and ZEV

For the case when gravity is not constant, the ZEM and ZEV must be found somehow.

There are three basic options, of varying complexity. The most complex option is simple

numerical integration of the equations of motion. This method is computationally intensive,

but will result in the most accurate estimates of ZEM and ZEV.

The second option employs the time-varying STM. Recall that the ZEM is the difference

between the desired final position and the final position in the absence of corrective maneuvers.

For the asteroid intercept/rendezvous problem, this can be expressed as

ZEM (t) = [r (tf )− rf ]a=0 (2.121)

where r (tf ) is the predicted spacecraft position at t = tf and rf is the desired final position.

Then the ZEM estimate using the time-varying STM becomes

ZEMSTM (t) ≈ δr (tf ) = Φ1δr (t) + Φ2δv (t) (2.122)
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Similarly, the ZEV can be estimated as

ZEV (t) = [v (tf )− vf ]a=0 (2.123)

ZEVSTM (t) ≈ δr (tf ) = Φ3δr (t) + Φ4δv (t) (2.124)

Finally, for cases when the gravitational force is not significant, the ZEM and ZEV can

be estimated by direct linearization of the relative states. Ignoring any external accelerations,

we can estimate the ZEV as the current relative velocity and the ZEM as the current relative

position plus the relative velocity times time-to-go, described as

ZEM (t) ≈ δr (t) + δv (t) ∆t (2.125)

ZEV (t) ≈ δv (t) (2.126)

2.4.8 Optimal Feedback Guidance Algorithms for a Special Case of g = g (t)

The gravitational acceleration is, in general, a function of position, which will not lead to an

analytical solution of the optimal control problem. However, if the gravitational acceleration

is assumed to be an explicit function of only time, then the analytical optimal solution can be

found.

For a mission from time t0 to tf , the optimal control acceleration needs to be determined

by minimizing the classical performance index of the form

J =
1

2

∫ tf

t0

aTa dt (2.127)

subject to Eq. 2.116 and the following given boundary conditions:

r (t0) = r0 r (tf ) = rf

v (t0) = v0 v (tf ) = vf

(2.128)

The Hamiltonian function for this problem is then defined as

H =
1

2
aTa + pTr v + pTv (g (t) + a) (2.129)
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where pr and pv are the co-state vectors associated with the position and velocity vectors,

respectively.

The co-state equations provide the optimal control solution expressed as a linear combina-

tion of the terminal values of the co-state vectors. Defining the time-to-go, tgo, as tgo = tf − t,

the optimal acceleration at any time t is expressed as

a = −tgopr (tf )− pv (tf ) (2.130)

By substituting the above expression into the dynamic equations to solve for pr (tf ) and

pv (tf ), the optimal control solution with the specified rf , vf , and tgo is finally obtained as

(2.131)a =
[rf − (r− tgov)]

t2go
−

2 (vf − v)

tgo
+

6
∫ tf
t (τ − t) g (τ) dτ

t2go
−

4
∫ tf
t g (τ) dτ

tgo

The zero-effort-miss (ZEM) distance and zero-effort-velocity (ZEV) error denote, respec-

tively, the differences between the desired final position and velocity and the projected final

position and velocity if no additional control is commanded after the current time. For the

assumed gravitational acceleration g (t), the ZEM and ZEV have the following expressions:

ZEM = rf −
[
r + tgov +

∫ tf

t
(tf − τ) g (τ) dτ

]
(2.132)

ZEV = vf −
[
v +

∫ tf

t
g (τ) dτ

]
(2.133)

2.4.9 Generalized ZEM/ZEV Feedback Guidance

In addition to the terminal-phase guidance problem of asteroid missions discussed so far,

the ZEM/ZEV concept can also be applied to a wide variety of orbital guidance problems

with g = g (x, t). In certain applications, such as planetary landing, gravity can be simply

assumed to be constant. In other applications, such as orbital transfer, nonlinearities are

strong enough that the position-dependent gravitational acceleration is often dealt with by

directly compensating (canceling) for it, rather than predicting its future effects. However, in

some cases a generalized ZEM/ZEV feedback guidance law can be employed by introducing

a number of waypoints. Details can be found in [24, 25] on how to practically compute such

waypoints in real time for the generalized ZEM/ZEV feedback guidance applications.
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2.5 Conclusions

The guidance algorithms described in this chapter are applicable to a wide variety of as-

teroid missions. The PN-based methods require only line-of-sight measurements, while more

advanced methods require knowledge of the state of both the spacecraft and the target aster-

oid. Predictive guidance laws use only information about the current state to form guidance

commands for future intercept. Optimal feedback guidance laws were also described, which can

be used to deliver the spacecraft to a specified final position, or they can offer full final state

control. When the mission time is not specified, conditions for an optimal mission time were

found. Finally, these optimal guidance laws were shown to be part of a class of generalized

ZEM/ZEV laws. Examples of these laws, and some practical considerations for implementa-

tion, were given. This dissertation establishes a firm foundation for continued research into

asteroid missions, including topics such as waypoint guidance, and strategies for dealing with

irregular gravitational fields of larger asteroids.
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CHAPTER 3. Applications of Generalized

Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm

The performance of the zero-effort-miss/zero-effort-velocity (ZEM/ZEV) feedback guidance

algorithm is evaluated through practical space application examples. The ZEM/ZEV feedback

guidance algorithm is in general not an optimal solution; however, it is an optimal solution in a

uniform gravitational environment. It is also conceptually simple and easy to implement, and

thus has great potential for autonomous on-board implementation. It is shown that, for some

classic ballistic missile intercept and asteroid intercept scenarios, the ZEM/ZEV algorithm can

even compete with corresponding open-loop optimal solutions, while its feedback character-

istics make it more suitable to deal with uncertainties and perturbations. By employing the

ZEM/ZEV algorithm in the highly nonlinear orbital transfer and raising problems and com-

paring with corresponding open-loop optimal solutions, its simplicity and near-optimality are

further verified.

3.1 Introduction

Optimal control theory has been widely used for decades in many different applications;

examples include spacecraft orbit control, missile guidance control, robot control, and flight

vehicle trajectory control. [18, 27] The problem of controlling the trajectory of aerospace ve-

hicles from an arbitrary initial position and initial velocity to a desired target position with

constrained, free or pointed terminal velocity in a specific time, or within a predefined time

range, is of fundamental interest as an optimal control problem.

Bryson and Ho discussed optimal control laws for a simple rendezvous problem, consid-

ering both free terminal velocity and constrained terminal velocity. [18] They also discussed
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the relationship between optimal control and proportional navigation guidance. Battin also

discussed an optimal terminal state vector control for the orbit control problem, directly com-

pensating for the known disturbing gravitational acceleration. [3] D’Souza further examined

an optimal control algorithm in a uniform gravitational field, and developed a computational

method to determine the optimal time-to-go. [20] Ebrahimi et al. proposed a robust optimal

sliding mode guidance law for an exoatmospheric interceptor, using fixed-interval propulsive

maneuvers. [4] In this paper, gravity was considered to be an explicit function of time. One

major contribution of Ebrahimi et al. was the new concept of the zero-effort-velocity (ZEV)

error, analogous to the well-known zero-effort-miss (ZEM) distance. The ZEV is the velocity

error at the end of the mission if no further control accelerations are imparted. Furfaro et

al. later employed the ZEM/ZEV concept to construct two classes of non-linear guidance al-

gorithms for a lunar precision landing mission. [23] Guo et al. [21] showed that in a uniform

gravitational field, the ZEM/ZEV logic is basically a generalized form of various well-known

optimal feedback guidance solutions such as intercept or rendezvous, [18] terminal guidance, [3]

and planetary landing. [20] The performance of the ZEM/ZEV logic for an asteroid intercept

mission with precision targeting requirements was evaluated by Hawkins et al., [22] and com-

pared with the performances of classical missile guidance methods like proportional navigation

guidance (PNG) and augmented proportional navigation guidance (APNG).

For many practical missions, the gravitational acceleration is not constant nor an explicit

function of time, but is instead a function of position. The ZEM/ZEV algorithm is not an

optimal solution when the gravitational acceleration is a function of position. However, the

ZEM and ZEV terms can be obtained by numerically propagating the dynamic equations,

and the ZEM/ZEV algorithm can accomplish the control mission in a near-optimal manner.

The objective of this chapter is to show how to use the generalized ZEM/ZEV algorithm for

a variety of practical applications. For highly nonlinear systems, numerical propagation of

the states for the entire remaining mission time is not sufficient, as nonlinearities during the

actual mission violate the assumptions of the ZEM/ZEV algorithm. For these highly nonlinear

cases, a general way to improve the performance of the ZEM/ZEV feedback algorithm is to

divide the total flight time into one or more segments and somehow determine optimal or near-
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optimal waypoints to connect the different segments. Such a waypoint concept was considered

by Sharma et al., [28] and the computational method was provided to solve nonlinear optimal

control problems with terminal constraints.

In the last decade, pseudospectral optimization methods have been used for a variety of

optimal control applications. [29, 30, 31] NASA’s Transition Region and Corona Explorer

(TRACE) spacecraft successfully flight-tested time-optimal slews in the presence of various

constraints, [32] ushering in a new era of employing optimization techniques for spacecraft at-

titude control. A number of optimization software packages are now on the market, including

SNOPT, DIDO, TOMLAB [33] and others. GPOPS (General Pseudospectral Optimal Con-

trol Software) is one of the most versatile open-source multi-phase optimizers, and is used in

this dissertation. [34] GPOPS is used in this study to generate the open-loop optimal solution

to compare the ZEM/ZEV algorithm against, and to obtain optimal waypoints to improve

the performance of the generalized ZEM/ZEV algorithm for missions with highly nonlinear

dynamics.

In this chapter, the generalized optimal control problem is first briefly reviewed. Three

different types of ZEM/ZEV optimal feedback control algorithms are obtained, for different

terminal requirements. Each algorithm is then investigated through an illustrative example,

and the characteristics of each algorithm are discussed.

3.2 Optimal Feedback Guidance Algorithms

3.2.1 General Equations of Motion

The equations of motion of a space vehicle in a gravitational field are given by

ṙ = v (3.1)

v̇ = g (r) + a (3.2)

a =
T

m
(3.3)
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where r and v represent the position and velocity vectors, respectively; a is the control ac-

celeration provided by the thrusting force T; m is the vehicle mass; and g (r) denotes the

gravitational acceleration acting on the vehicle, which is generally a function of position. In

this dissertation, these vectors denote 3x1 column vectors expressed in a non-rotating inertial

reference frame.

3.2.2 Optimal Feedback Guidance Algorithms for a Special Case of g = g (t)

The gravitational acceleration is, in general, a function of position, which will not lead to an

analytical solution of the optimal control problem. However, if the gravitational acceleration

is assumed to be an explicit function of only time, then the analytical optimal solution can be

found.

For a mission from time t0 to tf , the optimal control acceleration needs to be determined

by minimizing the classical performance index of the form

J =
1

2

∫ tf

t0

aTa dt (3.4)

subject to Eqs. 4.1 through 3.3 and the following given boundary conditions:

r (t0) = r0 r (tf ) = rf

v (t0) = v0 v (tf ) = vf

(3.5)

The Hamiltonian function for this problem is then defined as

H =
1

2
aTa + pTr v + pTv (g (t) + a) (3.6)

where pr and pv are the co-state vectors associated with the position and velocity vectors,

respectively.

The co-state equations provide the optimal control solution expressed as a linear combina-

tion of the terminal values of the co-state vectors. Defining the time-to-go, tgo, as tgo = tf − t,

The optimal acceleration at any time t is expressed as

a = −tgopr (tf )− pv (tf ) (3.7)
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By substituting the above expression into the dynamic equations to solve for pr (tf ) and

pv (tf ), the optimal control solution with the specified rf , vf , and tgo is finally obtained as

(3.8)a =
[rf − (r− tgov)]

t2go
−

2 (vf − v)

tgo
+

6
∫ tf
t (τ − t) g (τ) dτ

t2go
−

4
∫ tf
t g (τ) dτ

tgo

The zero-effort-miss (ZEM) distance and zero-effort-velocity (ZEV) error denote, respec-

tively, the differences between the desired final position and velocity and the projected final

position and velocity if no additional control is commanded after the current time. For the as-

sumed gravitational acceleration g (t), the ZEM and ZEV have the following expressions [22, 28]:

ZEM = rf −
[
r + tgov +

∫ tf

t
(tf − τ) g (τ) dτ

]
(3.9)

ZEV = vf −
[
v +

∫ tf

t
g (τ) dτ

]
(3.10)

Then, the optimal control law, Eq. 3.8, can be equivalently expressed as

a =
6

t2go
ZEM− 2

tgo
ZEV (3.11)

For certain missions where the terminal velocity is not specified, the optimal control law,

in terms of ZEM only, can be obtained as

a =
3

t2go
ZEM (3.12)

Though of limited interest for most intercept and rendezvous missions, the optimal control

to regulate only the terminal velocity, in terms of ZEV only, can also be obtained as

a =
1

tgo
ZEV (3.13)

A special case of uniform gravitational environment can be assumed for many planetary

landing and asteroid terminal guidance problems. The three optimal algorithms described by

Eqs. 3.11 through 3.13 then become the exact optimal solutions that achieve the optimal feed-

back performance and maintain robustness against uncertainties. For other missions, though,

the gravitational acceleration cannot be simply modeled as a constant (or as a pure function

of time), but must be considered a function of position. For this case, the ZEM and ZEV can

be found by numerically integrating the dynamic equations. The same control expressions are
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used, with the numerically propagated values of ZEM and ZEV. The predictions and controls

are updated in real-time, finally accomplishing the control mission at near-optimal levels with

acceptable computational complexity.

For highly nonlinear systems, predicting the future states is prone to errors. Another

alternative form of the ZEM/ZEV algorithm can be adopted for this situation. Rather than

predicting the effect of the nonlinear terms, the effects of these terms are directly compensated

for at all times. The algorithm thus approaches feedback linearization behavior. The control

algorithm, Eq. 3.8, then simply becomes the following form suggested by Battin in [3]:

a =
6 [rf − (r + tgov)]

t2go
−

2 (vf − v)

tgo
− g (r) (3.14)

3.3 Optimization with GPOPS Software

GPOPS uses hp-adaptive pseudospectral methods to solve optimal control problems of one

or more phases. The user supplies the governing dynamic equations, cost function, and various

constraints, and, if feasible, GPOPS returns the optimal control histories. The theoretical basis

and implementation of GPOPS are now briefly described.

Pseudospectral numerical optimization methods approximate the states, co-states, and con-

trols using Lagrange interpolating polynomials. Since Lagrange polynomials and their deriva-

tives can be evaluated for any time, the states and controls can be represented by a discrete

set of points. If there is an integral in the cost functional, this is approximated with Gaussian

quadrature. An hp-adaptive method can automatically adjust the mesh points (h-adaptivity)

and the order of the approximating polynomial (p-adaptivity). The complete problem is thus

posed as a nonlinear program (NLP), which can be solved using one of a variety of well-known

NLP solvers.

The GPOPS user must supply the governing differential equations, minimum and maximum

values for all of the states and controls, as well as minimum and maximum values for the initial

and final times. Guesses for the initial and final values of all of the states, controls, and times

are also supplied. Finally, the cost functional, a combination of the standard Mayer (endpoint)

and Lagrange (running) costs, is specified.
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The initial time is typically fixed, and the final time can be fixed or free. In a multi-phase

problem, each phase can have a minimum or maximum duration. For example, a three-stage

rocket could be designed with the first two phases lasting a specified length of time, and the

third phase and, thus, the final time, free.

In addition to these inputs, some optional constraints may be specified. Event constraints

are equality or inequality constraints that are expressed as functions of initial and final time,

as well as initial and final values of the states. A typical event constraint might be ensur-

ing that the final position falls on some specified curve. Path constraints are equality or

inequality constraints expressed as functions of the time, states, and controls. A typical path

constraint might be ensuring that the norm of the controls always equals control magnitude

for a constant-thrust mission. Parameter constraints are equality or inequality constraints on

parameters, variables that are constant during the mission but not known ahead of time. A

typical parameter constraint might be the mass ratio of a staged rocket.

Because the controls and states are approximated with polynomials, the controls and states

(and co-states) must be smooth within a given phase. The examples considered in this chapter,

and many other guidance problems with continuous thrust, are smooth in this sense. Known

or suspected discontinuities and singularities, such as ”bang-bang” control or problems with

singular arcs, can be handled by breaking the problem into multiple phases. Even in these cases,

GPOPS can often find a good approximation to the discontinuous solution in a single phase,

which can then be refined into a multi-phase problem. GPOPS can find numerical derivatives

of the various constraints, but if available, analytical expressions should be used to enhance

speed and accuracy. Certain constraints, such as control saturation, do not have continuous

derivatives. For such cases, an approximation with continuous derivatives can be used.

3.4 Ballistic Missile Intercept Example

Before introducing the full ZEM/ZEV algorithm, it is instructive to consider ZEM control

for a well-known example problem. The ballistic missile intercept problem is considered, to put

considerations of the ZEM and the mission time in familiar terms. With this background, the

full ZEM/ZEV algorithm will be introduced in the next example problem.
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The objective of an example problem here is to examine the performance of guidance algo-

rithms for a tactical missile to intercept a ballistic missile target. The dynamic models for the

missile and target are represented as [1]

ẍM =
−µxM(

x2
M + y2

M

)1.5 + axM = gxM + axM

ÿM =
−µyM(

x2
M + y2

M

)1.5 + ayM = gxM + ayM (3.15)

and

ẍT =
−µxT(

x2
M + y2

M

)1.5 = gxM

ÿT =
−µyT(

x2
M + y2

M

)1.5 = gyM (3.16)

where the subscript M is used for the missile, the subscript T is used for the target ballistic

missile, (x, y) are position vector components in an Earth-centered inertial coordinate system,

µ is the gravitational parameter of the Earth (3.986x10ˆ14 mˆ3/sˆ2), and a is the control

acceleration.

The line-of-sight (LOS) is defined as the line from the missile to the target. The LOS angle,

λ, is the angle between this line and a constant reference line in the inertial frame, and it is

expressed as

λ = tan−1 yTM
xTM

(3.17)

where (xTM , yTM ) are the relative position components in the inertial frame defined as

xTM = xT − xM

yTM = yT − yM (3.18)

The relative velocity components, (vx, vy), are also defined as

vx = ẋTM = ẋT − ẋM

vy = ẏTM = ẏT − ẏM (3.19)

The distance from the missile to the target is

r =
√
x2
TM + y2

TM (3.20)
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3.4.1 Classical Guidance Algorithms

Before discussing an application of the ZEM/ZEV algorithms, first the classical proportional

navigation guidance (PNG) law will be described. The classical PNG law is simply given byaxM
ayM

 = NVcλ̇

− sinλ

cosλ

 (3.21)

where N is the effective navigation ratio, a user-adjustable parameter, and the closing

velocity, Vc, and LOS rate, λ̇, are determined as

Vc = −ṙ =
− (xTMvx + yTMvy)

r
(3.22)

λ̇ =
xTMvy − yTMvx

r2
(3.23)

The classical PNG algorithm commands acceleration perpendicular to the instantaneous

LOS direction. For a missile with aerodynamic actuators, the actual acceleration would be

perpendicular to the missile’s velocity vector. For small turn rates, the missile velocity vector

and LOS direction are approximately aligned.

When the gravitational environment is known, the augmented PNG (APNG) algorithm can

be used to improve the performance of the PNG. The APNG law isaxM
ayM

 = N

(
Vcλ̇+

1

2
(gT⊥ − gM⊥)

)− sinλ

cosλ

 (3.24)

where gT⊥ and gM⊥ are components gravity acting on the missile and target, perpendicular

to the LOS direction. The best PNG law, described in [1], is the so-called predictive guidance

algorithm.

When accurate models of the missile and target dynamics are known, the positions of the

missile and target at the planned intercept time can be found by numerical integration. The

ZEM vector is determined as

ZEM =

ZEMx

ZEMy

 =

x̃TF − x̃MF

ỹTF − ỹMF

 (3.25)

where (x̃TF , ỹTF ) are the predicted final position components of the target and (x̃MF , ỹMF ) are

the predicted final position components of the missile if no further accelerations are imparted.
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The predictive guidance algorithm is based on PNG, so only components normal to the

LOS are considered. The control acceleration is then given asaxM
ayM

NZEM⊥
t2go

− sinλ

cosλ

 (3.26)

where

ZEM⊥ = −ZEMx sinλ+ ZEMy cosλ

3.4.2 Feedback Guidance Using Generalized ZEM Algorithm

The optimal ZEM feedback algorithm, given by Eq. 3.12, is then expressed asaxM
ayM

 =
3

t2go

ZEMx

ZEMy

 (3.27)

The predictive guidance algorithm, Eq. 3.26, differs from the generalized ZEM algorithm

[Eq. 3.27] in two main ways. First, the predictive algorithm restricts accelerations to be per-

pendicular to the LOS, while the ZEM algorithm can command accelerations in any direction.

Second, the predictive algorithm leaves the navigation constant N as an adjustable parameter,

while the ZEM algorithm has a fixed gain to ensure optimality.

Both algorithms are derived assuming that the total flight time is specified. There are some

cases where enforcing a particular mission time may be desirable, such as intercepting a target

missile before multiple payloads can be deployed, or ensuring that intercept does not occur

above a particular location on Earth. For most missions, though, the particular time of intercept

is not crucial, and is not specified beforehand. Although in principle a broad range of intercept

times could be specified, missions that are too short or too long can experience problems. More

control energy will be consumed, which may exceed the capacity of the actuators and result in

a failure to intercept.

Recall that the ZEM is a function of the time-to-go, in addition to being a function of the

current missile and target states. The simplest way to determine the time-to-go is to choose

the time-to-go that corresponds to the minimum norm of the ZEM. The ZEM is found by

numerically integrating the current states without control accelerations, so the ZEM is found
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at every time step in the integration. Finding the minimum norm of the ZEM is equivalent to

simply predicting the time of closest approach. The goal of the control law is to reduce the

ZEM to zero, so choosing the time of minimum ZEM corresponds to exploiting the dynamics

to give the control algorithm the smallest error to overcome.

A simple line search can be used to find the best time-to-go. As the dynamic equations are

integrated, there will be a ZEM associated with each time step. Due to the assumptions for

PN guidance, the missile must be headed ”toward” the target. When this is true, the predicted

ZEM will monotonically decrease with increasing tf , reach a minimum, then monotonically

increase. Finding the time-to-go is just a matter of integrating until the predicted ZEM starts

to increase. The smaller of the last two ZEM predictions corresponds to the best time-to-go.

3.4.3 Numerical Simulation Example

A ballistic intercept scenario, examined in [1], was used to evaluate both the predictive and

ZEM algorithms. With “perfect” initial conditions, the predictive and ZEM laws will both

achieve impact with no control accelerations (an ideal situation), while the PNG and APNG

laws will still require some control accelerations. To be able to compare the predictive and

ZEM laws, the example was modified appropriately. The initial position and initial velocity

magnitude are the same, but the initial velocity direction is changed slightly. The initial

conditions are rT0 = (0, 6378.245) km, vT0 = (6785, 2880) m/s, rM0 = (4510.1, 4510.1) km,

vM0 = (2006, 5954) m/s.

Solving the optimal control problem with GPOPS is straightforward for the ballistic missile

intercept. There are no limits on the control inputs, and generous limits on the states can be

used. For example, the x and y positions can be constrained to be from negative two to positive

two earth radii. GPOPS will converge more quickly if there are finite bounds. The flight time

can be left free for the overall optimal solution, or specified to find the optimal intercept for a

given mission time.

Figure 3.1 shows comparisons between the generalized ZEM algorithm with adaptive tgo

and the open-loop optimal solution, as generated by GPOPS. The trajectories, control histories,

and performance index histories are shown. The adaptive flight time algorithm finds the best
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flight time to be 687 s, a little less than the optimal time of 700 s. The control histories,

however, are similar, and the performance index value is only 2% larger.

Figure 3.1 Missile intercept using the generalized ZEM algorithm and an open-loop optimal

approach.

The ZEM algorithm has a fixed gain to ensure optimality, while the gain is an adjustable

parameter for the PNG-based methods. The optimal value for the navigation constant turns

out to be 3, but it is usually chosen in the range from 3 to 5. Larger values cause the vehicle to

turn onto a collision course more quickly, at the expense of more control effort. This increased

control effort is manifest in two different ways. First, the performance index for the mission

increases. Second, the maximum level of commanded acceleration increases, which can become

important if there is an upper limit on available accelerations.

To study the effect of changing the navigation constant, the intercept mission example was

simulated for both the PNG law and the APNG law, for a variety of N ranging from 2 to

10. Figure 3.2 shows the performance index with varying N , as well as the maximum control

magnitude required. For the test case shown, the optimal N for PNG is 5.3, while the optimal
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N for APNG is 3.4. Table 3.1 gives a detailed comparison of the different guidance laws. The

ZEM law with adaptive flight time is shown, as well as the ZEM law using the known optimal

flight time of 700 s.

Table 3.1 Performance of various guidance methods for missile intercept

PNG APNG ZEM ZEM Open-Loop

(N = 5.3) (N = 3.4) (adaptive tf ) (tf = 700s) Optimal

Performance Index J 3526.5 3648.2 3594.1 3515.9 3515.8

Max Control, m/s2 6.14 4.94 6.25 5.79 5.79

Flight time tf , s 701 702 687 700 700

(a) Performance index. (b) Maximum magnitude of control.

Figure 3.2 Missile intercept using PNG and APNG with different navigation ratios.

The best PNG law performs better than the ZEM law with adaptive tf , which in turn is

better than the APNG law. The ZEM law with the known optimal flight time performs best

of all, effectively identical to the optimal. The specific performance of the different algorithms

depends on the setup of the problem. The optimal values for N are only found by simulating

many cases, and the optimal flight time for the ZEM algorithm comes from first finding the

open-loop optimal solution. If the maximum control magnitude is a concern, there is a limit to

how large a navigation ratio is acceptable. And although the best case for the APNG does not

perform as well as the best-case PNG law, other tradeoffs for J and control magnitude must

be considered when the optimal N cannot be determined beforehand.
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One advantage the ZEM law has over the PNG-based laws is the ability to control flight

time. A mission with the same initial conditions was simulated, with flight times ranging from

500 s to 900 s. Figure 3.3 shows the trajectories for various cases, as well as the performance

index J for both the ZEM law and the open-loop optimal solution. Not only is the ZEM law

able to intercept at a variety of times, it does so with barely any discernible difference from

the optimal.

(a) Vehicle trajectories using ZEM. (b) Performance Comparison with the optimal.

Figure 3.3 ZEM algorithm with various specified flight times.

3.5 Asteroid Proximity Operation Example

The problem of detecting a possibly threatening near-Earth object (NEO) and responding

to that threat has been given much consideration in recent years. One major task of the

planetary defense community is to find an optimal approach to avert a potential NEO-Earth

collision. [35] Although there is no universally accepted definition of optimal mitigation for this

problem, three broad categories of deflection missions have emerged. The first is a slow-push

scheme to gradually change the NEO’s orbit. The second is a high-speed intercept mission by a

massive spacecraft, changing the NEO’s orbit via a kinetic impact. [9, 19] The third approach

is a nuclear detonation for large NEOs, or when there is little mission lead time. A number

of different guidance algorithms can be employed for such asteroid intercept or rendezvous
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missions.

3.5.1 Terminal Guidance for Asteroid Intercept

Consider both the target asteroid and the interceptor spacecraft as point masses in a helio-

centric Keplerian orbit, with the equations of motion described by

r̈T = − µ

r3
T

rT (3.28)

r̈S = − µ
r3
s

rS −
µ⊗
r3

r + a (3.29)

where rT and rS are the position vectors of the target and the interceptor, respectively, with

magnitudes rT and rS , µ is the gravitational parameter of the sun (1.32715x10ˆ20 mˆ3/sˆ2), µ⊗

is the estimated gravitational parameter of the asteroid, a is the applied control acceleration,

and r is the relative position vector of the interceptor (with magnitude r) with respect to the

asteroid, defined as

r = rS − rT (3.30)

Neglecting the asteroid’s gravitational parameter, the equations of motion are essentially

the same as for missile intercept. The ZEM algorithm can be obtained as

a = − 3

t2go
r̃ =

3

t2go
(r̃TF − r̃SF ) (3.31)

where r̃TF and r̃SF are the predicted final positions of the asteroid and interceptor if no further

control accelerations are applied, and tgo can be based on a specified final time or adjusted as

described in the previous section.

For the case where the gravitational effect is negligible, the optimal time-to-go can be

calculated based on the current relative position r and relative velocity v, as follows: [21]

(3.32)tgo =
2r

v

(
cos θ −

√
cos2 θ − 3

4

)
, θ ∈ (−30◦, 30◦)

where θ is the angle between r and −v. There exists a solution for tgo that locally minimizes

the optimal performance index only when θ is in the above range. Outside that range, the

performance index decreases monotonically with increasing tgo, and some upper bound on the

flight time must be selected.
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3.5.2 Terminal Guidance for Asteroid Landing

For an asteroid landing problem, we assume that the asteroid is a sphere with radius R⊗.

For convenience, we also ignore the negligible gravitational acceleration of the asteroid, so the

equations of motion become

ṙ = v

v̇ = a (3.33)

The terminal velocity is by definition zero for the landing mission. If the landing site is

specified, one of the algorithms from [8] can be used. When the landing site is not specified,

then the final position must meet the following constraint

rTf rf = R2
⊗ (3.34)

Incorporating the terminal constraint, the performance index can be modified as follows:

J =
1

2
σ
(
rTf rf −R2

⊗
)

+

∫ tf

t0

aTa dt (3.35)

where σ is the scalar multiplier for the terminal constraint. The co-state vector has the following

terminal constraint

pr (tf ) =
∂J

∂rf
= σrf (3.36)

The optimal landing site r∗f can be found as

r∗f = R⊗
tgo (v + vf ) + 2r

‖tgo (v + vf ) + 2r‖
= R⊗

tgov + 2r

‖tgov + 2r‖
(3.37)

Finally, the guidance algorithm for optimal asteroid soft landing is obtained as

a =
6
[
r∗f − (r + tgov)

]
t2go

−
2 (vf − v)

tgo
(3.38)

Similar to the intercept problem, an optimal time-to-go exists for certain initial condi-

tions. [21] The optimal time-to-go is found by solving the final equation

t2gov
Tv − tgo6vT (rf − r) + 9 (rf − r)T (rf − r) = 0 (3.39)
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where the condition

[
6vT (rf − r)

]2 − (4vTv
)

9 (rf − r)T (rf − r) ≤ 0 (3.40)

is required for a local minimum of tgo. When this minimum does not exist, tgo needs to be as

large as possible. However, there is no guarantee that any particular tgo will not intercept the

surface of the asteroid, so a numerical simulation is required to evaluate feasibility, using the

chosen tmax as the initial guess.

3.5.3 Numerical Simulation Example

An asteroid landing problem using the guidance law expressed by Eq. 3.38 was numerically

simulated for a variety of initial conditions. The target asteroid has a radius of 100 m, and

is assumed to be centered at the origin of the coordinate system. The lander has an initial

velocity of (20, -40, 0) m/s. Various initial positions are tested to illustrate the performance

of the ZEM/ZEV algorithm with adaptive tf and landing site. For initial conditions without a

local minimum for the performance index, the ultimate upper bound of the flight time is 40 s.

Solving the optimal asteroid landing problem with GPOPS requires only a couple of con-

straints. There is a terminal event constraint requiring that the final position lies on a circle or

radius 100 m. The final time is free, with the designer-chosen upper bound of 40 s. In this case,

the optimal solution always takes the maximum amount of time. As in the previous example,

generous bounds on the states and controls are provided to make the search space finite.

Figure 3.4 shows the trajectories using the ZEM/ZEV approach and the open-loop opti-

mal trajectories obtained from GPOPS. Figure 3.5 compares the calculated flight time and

performance index for the ZEM/ZEV law and the open-loop optimal solution.

The landing mission can be successfully completed for all of the initial conditions considered.

The initial conditions roughly fall into two different types. The first type includes initial

conditions that will collide with, or come close to colliding with, the asteroid if the lander

continues on a straight-line trajectory. The second type has initial conditions that will travel

well outside the asteroid’s footprint. For the second type of initial conditions, the ZEM/ZEV

algorithm performs identically to the open-loop optimal solution, which verifies the optimal
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(a) ZEM/ZEV with adaptive tf and landing site. (b) Open-loop optimal.

Figure 3.4 Vehicle trajectories for asteroid landing (tf = 40s).

(a) Flight time comparison. (b) Performance comparison.

Figure 3.5 Performance comparison between ZEM/ZEV and open-loop optimal (tf = 40s).
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feature of autonomous landing site calculation approach. For initial conditions on a collision

course (or nearly so), a collision hazard is detected and the flight time is adjusted downward

until the mission is safe. The reduced mission time leads to more acceleration commanded.

One trajectory of particular interest is the case when the spacecraft starts on a collision

course through the center of the asteroid. The ZEM/ZEV algorithm will simply reduce the

mission time and arrest the spacecraft’s forward velocity, while the optimal solution is to turn

the spacecraft to fly around the asteroid while taking the full 40 s.

3.6 Orbit Transfer Example with Continuous Thrust

The objective of an orbital transfer/raising problem is to optimally transfer a spacecraft

from a lower orbit to a higher orbit, with a specified injection point and velocity, at a given

time. The spacecraft can also be brought from a higher orbit to a lower one. For high-thrust

engines, the well-known impulsive Hohmann transfer is the minimum-energy transfer, however

for continuous low-thrust engines, other methods must be used.

For simplicity, consider the following spacecraft dynamic equations:

ẋ = vx

ẏ = vy (3.41)

v̇x = −µ x

(x2 + y2)1.5 + ax

v̇y = −µ y

(x2 + y2)1.5 + ay (3.42)

where (x, y) and (vx, vy) denote the position components and velocity components in heliocen-

tric inertial orbit plane, µ is the gravitational parameter of the sun, and (ax, ay) are control

accelerations along (x, y) axes.

The only requirement for the control system is to ensure that the spacecraft satisfies the

following terminal conditions at the final time tf

x (tf ) = xc y (tf ) = yc

vx (tf ) = vxc vy (tf ) = vyc

(3.43)
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3.6.1 Application of ZEM/ZEV Feedback Guidance Algorithm

The equations of motion are strongly coupled, and an analytic optimal control algorithm

does not exist. The ZEM/ZEV algorithm, Eq. 3.11, can control the terminal position and

velocity, at a specified final time. These encompass all of the requirements of the orbit transfer

mission, making it a good candidate for this problem. Expressed in the x− and y−coordinates,

the proposed ZEM/ZEV law becomesax
ay

 =
6

t2go

ZEMx

ZEMy

− 2

tgo

ZEVx
ZEVy

 (3.44)

where the ZEM and ZEV are obtained by subtracting the predicted terminal states (with no

further control accelerations) from the required terminal states, as follows:ZEMx

ZEMy

 =

xc − x̃F
yc − ỹF


ZEVx
ZEVy

 =

vxc − ṽxF
vyc − ṽyF

 (3.45)

3.6.2 Numerical Simulation Example

An orbit transfer example from Earth to Mars is considered here to evaluate the performance

of the generalized ZEM/ZEV algorithm. Feedback guidance control is not generally needed

for such an orbital transfer mission, because an open-loop optimal trajectory can easily be

generated during the long mission time. We examine this case here only as an illustrative

example to demonstrate the applicability of the ZEM/ZEV feedback guidance concept.

For ease of analysis, canonical (or normalized) units will be used. For Earth’s orbit, the

mean distance to the sun is 1 AU (astronomical unit), 1.4959965x10ˆ11 m. Defining 1 TU (time

unit) as 58.132821 days gives the Earth a circular orbital velocity of 1 AU/TU. Mars orbit is

at a radius of 1.54 AU, with a velocity of 0.8059 AU/TU. In these units, the gravitational

parameter µ is 1 AUˆ3/TUˆ2.

For this mission, the spacecraft starts at (1, 0) AU with velocity of (0, 1) AU/TU. The

terminal position is (-0.3986, 1.4875) AU, the terminal velocity is (-0.7784, -0.2086) AU/TU.
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The flight time is 144 days, or 2.4771 TU.

Finding the optimal control with GPOPS is straightforward in this case, as the initial and

final position and velocity are fully specified, as is the mission time. Again, generous limits on

the states and controls are given to maintain a finite search space.

Figure 3.6 shows the position, velocity, and acceleration histories for both the ZEM/ZEV

algorithm and the optimal open-loop solution determined by GPOPS. Figure 3.7 shows the

transfer orbits for both cases. The direction and normalized magnitude of the acceleration

commands are also shown every 1/10 of the mission.

Figure 3.6 144-Days orbit transfer from Earth to Mars.
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Figure 3.7 144-Days orbit transfer from Earth to Mars.

3.7 Orbit Raising Problem

The objective of an orbit raising problem is to transfer a spacecraft from one orbit to

another orbit. For an orbital transfer to a circular orbit, the terminal constraints are that the

spacecraft should be placed at a specified distance from the sun with circular orbital velocity.

The final radial velocity is zero, while the true anomaly (or any equivalent angular position) is

free. Due to the nature of the constraints, polar coordinates are used. The standard dynamical

models for this type of orbit raising problem are described by

ṙ = u

u̇ =
v2

r
− µ

r2
+ ar (3.46)

v̇ = −uv
r

+ at

where r, u, and v represent the distance of the spacecraft from the sun, the radial velocity,

and transverse velocity, respectively; and ar and at are control accelerations in the radial and
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transverse directions, respectively. The required terminal states, as described above, are

r (tf ) = rf

u (tf ) = 0 (3.47)

v (tf ) =

√
µ

rf

3.7.1 Application of ZEM/ZEV Feedback Guidance

The orbit raising problem is somewhat unusual in that the control requirements are different

along the radial and tangential axes. In the radial direction, there are position and velocity

requirements as usual. In the tangential direction, we have the rare case where only the velocity

is specified. The feedback algorithm is a combination of Eqs. 3.11 and 3.13, as follows:

ar =
6

t2go
ZEMr −

2

tgo
ZEVr

at =
1

tgo
ZEVt (3.48)

where the ZEM and ZEV are, as before, the difference between the required and predicted

terminal states defined as

ZEMr = rf − r̃f

ZEVr = −ũf (3.49)

ZEVt =

√
µ

rf
− ṽf

Due to nonlinearities in the system, the ZEM/ZEV algorithm with direct gravity compen-

sation, Eq. 3.14, can be used as

ar =
6

t2go
(rf − (r + tgou))− 2

tgo
(uf − u)−

(
v2

r
− µ

r2

)
at =

1

tgo
(vf − v)−

(uv
r

)
(3.50)

The first ZEM/ZEV algorithm, Eq. 3.48, works by numerically predicting the final states,

so it is called the ZEM/ZEV predicting algorithm, or ZEM/ZEV-p. The second algorithm,

Eq. 3.50, works by directly compensating for the gravitational acceleration terms, so it is called

the ZEM/ZEV compensating algorithm, or ZEM/ZEV-c.
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3.7.2 Numerical Simulation Example

The same initial conditions as the Mars orbit transfer problem are considered, with the

same flight time. In the polar coordinate system, we have r (t0) = 1AU, u (t0) = 0AU/TU,

v (t0) = 1AU/TU, and tf = 2.4771TU. Both proposed ZEM/ZEV algorithms, described by

Eqs. 3.48 and 3.50, are used, called ZEM/ZEV-p and ZEM/ZEV-c, respectively. The optimal

open-loop solution, generated by GPOPS, is also shown.

Implementing GPOPS for the basic orbit raising problem is relatively simple. The flight

time is fixed. The final radial and tangential velocities are specified, as is the final radius. The

final rotation angle is free. Later, a more interesting implementation of a multiphase optimal

control problem with GPOPS will be described.

Figure 3.8 shows the position, velocity, and acceleration histories in the radial and tangential

directions for all three cases. The different algorithms perform similarly in the radial direction,

but are noticeably different in the tangential direction.

Sharma et al. describes a waypoint method for the same orbit raising problem. [28] The

problem was broken up into several segments, where the terminal state for each segment is

a waypoint in the overall problem. A series solution method (SSM) was then used to con-

nect the waypoints. The ZEM/ZEV algorithm can be used as part of a waypoint method to

improve performance. For this problem, the total flight time is divided into equal-length seg-

ments, and GPOPS is used to generate waypoints, enforcing the control law during the flight.

These waypoints are then used as intermediate points for control law simulation. The gravity

compensation form, ZEM/ZEV-c, is used for the waypoint method.

Optimal waypoints for the orbit raising problem can be found with GPOPS. The principle

of optimality ensures that the optimal solution in multiple phases is equivalent to the optimal

solution as one phase. To find waypoints, then, the problem is broken up into any number

of segments of equal duration. The six-dimensional waypoint (three position components and

three velocity components) is left as a set of six parameters to be found by GPOPS. Param-

eter variables are constant during each phase, but not known ahead of time. When GPOPS

solves the optimal control problem, the optimal parameters (the optimal waypoints) are found.
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Figure 3.8 144-Days orbit raising from Earth orbit to Mars orbit.
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ZEM/ZEV control can then be used, with each waypoint used as the final position and final ve-

locity for a given phase. A much more in-depth discussion of optimal waypoint determination,

applied to a Mars landing problem, is given in [24].

Figure 3.9 shows the orbit raising trajectories for all four methods discussed, ZEM/ZEV-p,

ZEM/ZEV-c, optimal open-loop, and the waypoint method with 12 waypoints. The first three

of these plots show the normalized accelerations every 1/10 of the mission time, while the last

shows the locations of the waypoints. Table 3.2 compares the performance of the ZEM/ZEV

waypoint method and the SSM waypoint method. Four cases are considered, using 1, 2, 4, and

12 total waypoints. The case with no waypoints, as well as the open-loop optimal solution, are

also shown for comparison.

The two ZEM/ZEV algorithms perform similarly, with a performance index 50-60% larger

than the open-loop optimal. The compensating algorithm performs better than the predicting

algorithm due to the nonlinear coupled terms. The predicting algorithm does not command as

large of an angular change, as can be seen in the rotation angle plot in Fig. 3.8. This plot shows

that control effort is wasted trying to overcome misleading terms in the dynamic equations.

The acceleration vectors in Fig. 3.9 show that the ZEM/ZEV algorithms spend too much effort

in the radial direction, which must be made up for later. The ZEM/ZEV algorithms also show

the opposite trends in tangential control from the optimal. Because the control directions are

separated, the tangential control channel cannot account for the effects of radial acceleration

on tangential velocity. One way to overcome these problems is to simply specify a terminal

position and velocity, changing the orbit raising problem to an orbital transfer problem. For

such case of orbital transfer problem formulation, the ZEM/ZEV comes within 2% increase of

the open-loop optimal performance index value.

The ZEM/ZEV algorithm can also be improved by implementing a waypoint scheme. The

adverse effects from nonlinear terms and coupled dynamics are reduced for shorter mission

times. By breaking the mission up into many shorter segments, the feedback properties of

the ZEM/ZEV algorithm can be preserved, while approaching optimal performance. The

ZEM/ZEV algorithm compares favorably compared to the SSM method as the number of

waypoints is increased, as can be seen in Table 3.2.
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(a) ZEM/ZEV-p (b) ZEM/ZEV-c

(c) Open-loop optimal (d) Waypoint-optimized ZEM/ZEV and open-loop op-
timal

Figure 3.9 Orbit-raising trajectories using ZEM/ZEV and open-loop optimal methods.
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Table 3.2 Performance Comparisons between ZEM/ZEV Algorithms and SSM

Open-Loop

No waypoint 2 waypoints 4 waypoints 12 waypoints Optimal

SSM 0.1314 0.1051 0.0982 0.0942

ZEM/ZEV-c 0.1415 0.1152 0.0996 0.0922 0.0910

3.8 Conclusions

Four different applications of the generalized zero-effort-miss/zero-effort-velocity (ZEM/ZEV)

feedback guidance algorithm have been investigated in this chapter. The application examples

were the ballistic missile intercept problem, the asteroid intercept and landing problem, and

the orbital transfer/raising problems. For cases when the gravitational acceleration can be

assumed to be independent of the vehicle’s state, three different feedback-optimal ZEM/ZEV

algorithms are considered. For many practical missions, the gravitational acceleration is a

function of the vehicle’s state. By numerically propagating the system state, corresponding

generalized ZEM/ZEV algorithms can be obtained.

Numerical simulations demonstrated that the generalized ZEM/ZEV guidance algorithm

can achieve intercept at a specified time. When the mission time is not specified, performance

can be improved with a flight-time adaptive approach. ZEM/ZEV feedback guidance is con-

ceptually simple, and is easy to implement. It works for many different cases, as the gains are

pre-defined, and do not need to be adjusted based on experience or on the specific problem.

The ZEM/ZEV algorithm can be used for a case, such as asteroid landing, where the only

the magnitude of the terminal position is specified. Results of numerical simulations show the

feasibility of the approach, including autonomous landing site selection.

For highly nonlinear systems with coupled dynamics, such as the orbital transfer/raising

problem, numerical simulations have confirmed the effectiveness of the generalized ZEM/ZEV

algorithm. For some missions, the performance of the ZEM/ZEV algorithm is significantly

worse than the open-loop optimal solution. In these cases, a series of waypoints can be found

using commercially available optimization software. The ZEM/ZEV algorithm is then used

between each waypoint. The ZEM/ZEV waypoint algorithm approaches the performance of
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the open-loop optimal solution, while maintaining the robustness of a closed-loop feedback

algorithm.



www.manaraa.com

65

CHAPTER 4. Waypoint-Optimized Zero-Effort-Miss/Zero-Effort-Velocity

Feedback Guidance for Mars Landing

This chapter investigates the optimization approach to generate waypoints for the Mars

landing problem in the context of employing the zero-effort-miss/zero-effort-velocity (ZEM/ZEV)

feedback guidance algorithm. For a power-limited engine, the waypoint optimization problem in

the presence of state constraints is converted to an equivalent standard quadratic programming

problem, which can be solved efficiently. In the case with a thrust-limited engine, by intro-

ducing a continuously differentiable function to approximate the standard saturation function,

the optimal waypoint can be determined using open-source optimization software. This novel

idea exploits parameter optimization techniques for feedback control implementation, thus it

can combine the advantages of open-loop and closed-loop methods to achieve near-optimal

performance with acceptable robustness, while meeting various practical constraints and re-

quirements.

4.1 Introduction

The Mars pinpoint landing problem continues to be an active area of research. A consid-

erable amount of effort has been devoted to it, with many new issues being investigated. The

general Mars entry, descent, and landing (EDL) mission is divided into four phases: the hy-

personic entry phase, the subsonic parachute entry phase, the propulsive terminal descent (or

powered descent) phase, and the touchdown phase. [36, 37] Due to the difficulty of accounting

for accumulated uncertainties from the first two phases, past landing missions, including the

Viking series (launched in 1975), Mars Pathfinder (1996), and Mars Exploration Rover (2003),

focused only on a safe landing. Landing accuracies larger than 10 km were acceptable for these
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missions. Even the recent Phoenix lander (2007) used a gravity turn descent, since precision

landing is not required. [38] The Mars Science Laboratory (launched on Nov. 26, 2011) is

expected to use a precision EDL system, to reach a more scientifically interesting area with

hazardous terrain nearby, and to demonstrate advanced landing capabilities.

Açıkmeşe and Ploen presented an off-line convex optimization approach for fuel-optimal

Mars pinpoint landing. [26] This approach takes many complex constraints into account, espe-

cially the non-convex lower bound on thruster levels. The approach was extended to a minimum

landing error problem for the case where no feasible pinpoint landing trajectories exist. [39]

These approaches, however, are not robust against disturbances, and require precise mathe-

matical modeling. Their open-loop natures make them inapplicable for autonomous onboard

implementation, given the wide range of potential initial conditions and the short propulsive

terminal descent phase.

Ebrahimi et al. proposed a robust optimal sliding mode guidance law for an exoatmospheric

interceptor, using fixed-interval propulsive maneuvers. [4] In this paper gravity was considered

to be a pure function of time. One major contribution of Ebrahimi et al. was the new concept

of the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) dis-

tance. The ZEV is the velocity error at the end of the mission if no further control accelerations

are imparted. Furfaro et al. later employed the ZEM/ZEV concept to construct two classes

of non-linear guidance algorithms for a lunar precision landing mission. [23] The performance

of the ZEM/ZEV algorithm for an asteroid intercept mission with precision targeting require-

ments was evaluated by Hawkins et al., [22] and compared with the performances of classical

missile guidance methods like proportional navigation guidance (PNG) and augmented PNG

(APNG). Reference [21] showed that in a uniform gravitational field, the ZEM/ZEV algorithm

is equivalent to well-known classical optimal feedback controllers for problems such as intercept

or rendezvous, [18] terminal guidance, [3] and planetary landing. [28, 40]

All of the optimal feedback guidance algorithms discussed above are concerned only with

the specified boundary conditions. For the Mars landing problem, this is not sufficient. For

example, the basic ZEM/ZEV algorithm does not ensure that a lander will stay above the

surface of Mars for the duration of the mission. The ZEM/ZEV algorithm, then, must be
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adapted to avoid collision with the surface of Mars, or other constraints.

Steinfeldt et al. describe a method of adjusting the flight time to meet constraints on

control magnitude and altitude. [40] Changing only the flight time, however, is of limited utility

when dealing with landing mission constraints. Control saturation limits can be alleviated by

increasing the mission time, so that the same total amount of control effort can be distributed

over a longer period. Collision avoidance, especially avoiding collision with the surface, can

usually be achieved by reducing the mission time, driving the lander closer to a “straight shot”

trajectory. These contradictory demands cannot both be satisfied by changing the mission

flight time.

In general, a Mars lander should be able to predict its trajectory and evaluate the possibility

of impact during the flight. If a hazard is detected, effective measures can be taken. Yanning

et al. [21] include an exploratory study of waypoint guidance, choosing a waypoint as an

intermediate target to meet mission constraints. Near-optimal performance can be achieved

with only one waypoint. In this study, however, the waypoint was chosen by trial and error,

and a more rigorous, autonomous method is needed. The waypoint method is also studied

by Sharma et al. [28] as a means to solve nonlinear optimal control problems with terminal

constraints.

In the last decade pseudospectral optimization methods have been used for a variety of opti-

mal control applications. [29, 30, 31] NASA’s Transition Region and Corona Explorer (TRACE)

spacecraft successfully flight-tested time-optimal slews in the presence of various constraints,

ushering in a new era of employing optimization techniques for advanced space missions. [32]

A number of optimization software packages are now on the market, including SNOPT, DIDO,

TOMLAB, [33] and others. GPOPS (General Pseudospectral Optimal Control Software) is one

of the most versatile open-source multi-phase optimizers using pseudospectral methods, and is

used in this dissertation. Its latest version offers a mesh refinement algorithm to accurately

distribute collocation points. [34]

This chapter begins with a brief summary of optimal ZEM/ZEV algorithms. Key results

are given, including a method for determining time-to-go. Two types of spacecraft engine are

considered. First is a power-limited engine. The total flight time is divided into two parts,
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with the acceleration assumed to be a linear function of time in each segment. The state

constraint is considered as an inequality constraint, and the waypoint optimization problem

becomes a standard quadratic programming problem. Although the power-limited engine may

be impractical to be employed for Mars landing, it is used here to illustrate the applicability of

the ZEM/ZEV method for different thruster systems, but not necessarily as a practical mission

example. For the thrust-limited engine, GPOPS is used to determine optimal waypoints.

GPOPS is suitable for constraining the control commands to be a function the current and

terminal states. To improve the efficiency and accuracy of the optimization, a continuously

differentiable function is developed that approaches the classical saturation function, so that

analytical derivatives can be passed to GPOPS. The novelty of this waypoint research lies in

the combination of the optimal properties of the optimization approach and the robustness of

ZEM/ZEV feedback control. Numerical simulations confirm the effectiveness of this approach.

4.2 Equations of Motion

Neglecting aerodynamic drag, the trajectory equations of motion during the powered de-

scent phase for a Mars lander are described by

ṙ = v (4.1)

v̇ = g + a (4.2)

a =
T

m
(4.3)

where r and v are the position and velocity vectors, a is the control acceleration provided by the

thrusters, T is the thrusting force vector, m is the spacecraft mass, and g is the gravitational

acceleration vector acting on the vehicle. During the powered descent phase, g is considered to

be constant. These vectors are 3x1 column vectors expressed in a non-rotating inertial reference

frame with its origin at the landing site of Mars.

The magnitude of the thrusting force, T , is modeled as the two-norm of a vector T as

T = |T|= −ṁc (4.4)
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where ṁ is the negative mass flow rate, and c = Ispg0 is the engine exhaust velocity.

4.2.1 Optimal Feedback Guidance Algorithms

Consider a classical optimization problem with the following performance index

J =
1

2

∫ tf

t0

aTa dt (4.5)

subject to Eqs. 4.1 through 4.4 and the following boundary conditions:

r (t0) = r0 =


x0

y0

z0

 r (tf ) = rf =


xf

yf

zf



v (t0) = v0 =


ẋ0

ẏ0

ż0

 v (tf ) = vf =


ẋf

ẏf

żf


(4.6)

The Hamiltonian function is defined as

H =
1

2
aTa + pTr v + pTv (g + a) (4.7)

where pr and pv are the co-state vectors associated with the position and velocity vectors,

respectively.

From the co-state equations, the optimal control solution can be expressed as a linear

combination of the terminal value of co-state vectors as

a = −tgopr (tf )− pv (tf ) (4.8)

where the time-to-go, tgo, is defined as: tgo = tf − t.

By substituting the above expression into the dynamic equations and solving for pr (tf )

and pv (tf ), the optimal control law with the specified rf , vf , and tf is obtained as

a =
6 [rf − (r + tgov)]

t2go
−

2 (vf − v)

tgo
− g (4.9)

The zero-effort-miss (ZEM) distance and zero-effort-velocity (ZEV) error denote the dif-

ferences between the desired final position and velocity and the projected final position and
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velocity if no additional control is commanded after the current time. For the assumed constant

gravitational acceleration, the ZEM and ZEV have the following expressions: [4, 21, 22, 23]

ZEM = rf −
(

r + tgov +
1

2
t2gog

)
(4.10)

ZEV = vf − (v + tgog) (4.11)

Using these expressions, Eq. 4.9 can be rewritten as

a =
6

t2go
ZEM− 2

tgo
ZEV (4.12)

For the Mars soft landing problem, the landing site is typically chosen as the origin of

the reference frame, so rf = 0, vf = 0, the optimal guidance law has the well-known simple

form: [21, 36]

a = − 6r

t2go
− 4v

tgo
− g (4.13)

4.3 Determination of Time-To-Go

The optimal mission time-to-go can be determined as the minimum real positive solution

of the following equation: [21]

gTgt4go − 4
(
vTv + vTf v + vTf vf

)
t2go + 24 (rf − r)T (v + vf ) tgo − 36 (rf − r)T (rf − r) = 0

(4.14)

The above equation can be simplified for the Mars soft landing problem due to the simple

terminal state requirements, as follows:

gTgt4go − 4vTvt2go − 24rTvtgo − 36rT r = 0 (4.15)

The altitude component of the vehicle’s position can thus be expressed as

y (t) = −
(tf − t)3

6
pry +

(tf − t)2

2
(g − pvy) (4.16)
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where y is the altitude of the vehicle, g is the gravitational acceleration, and pry and pvy are

the components of the co-state vectors along the altitude direction, given by

pry =
6ẏ0

t2f
+

12y0

t3f
(4.17)

pvy = −2ẏ0

tf
− 6y0

t2f
+ g (4.18)

The upper limit on flight time, which ensures a positive altitude in the time period (0, tf ),

can be found by analyzing the distribution of the roots of Eq. 4.16, which gives

tmax = −3y0

ẏ0
(4.19)

If the optimal tf obtained from Eq. 4.15 exceeds the upper limit tmax from Eq. 4.19, the

lander will collide with Mars’s surface before the scheduled landing at tf . When a collision

is predicted, the final time can be adjusted to tmax to complete the landing mission without

collision, at the expense of a higher performance index value.

When there is a constraint on either the control force or the control acceleration, adjust-

ing the flight time is usually not sufficient. To overcome this defect, the waypoint-optimized

ZEM/ZEV feedback scheme is proposed in the next section.

4.4 Waypoint Optimization for Power-Limited Engine

For a power-limited (or variable specific impulse) engine, the power for a given thrust is

expressed as [41, 42, 43]

P = −1

2
ṁc2 =

1

2
cT = −1

2

m2

ṁ
|a|2≤ Pmax (4.20)

where Pmax is the maximum power available from the engine.

The performance index can be expressed in terms of the final mass of the spacecraft by

integrating the above equation, as follows:

J =
1

2

∫ tf

t0

|a|2 dt ≤ −Pmax
∫ tf

t0

ṁ

m2
dt =

Pmax
mf

− Pmax
m0

(4.21)

Equation 4.20 shows that, for a given acceleration command, a, and current mass, m, a

larger power P results in a smaller mass consumption rate |ṁ|. If the thruster always operates
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at Pmax, all of the terms in Eq. 4.21 are equal, and minimizing J is equivalent to maximizing

the final mass of the spacecraft mf . The ZEM/ZEV algorithm discussed in this chapter is thus

optimal in terms of mass consumption.

The ZEM/ZEV feedback guidance command for constant gravitational acceleration is a

linear function of time. By dividing the mission time into two parts-from the beginning to the

waypoint time tm, and from the waypoint time to the end-the optimal accelerations can be

expressed as

a =

 (t− t0)α1 + β1 − g t ∈ (t0, tm)

(tf − t)α1 + β1 − g t ∈ (tm, tf )
(4.22)

where α1, α2, β1, and β2 are constant vectors to be found.

Substituting Eq. 4.22 into the equations of motion, the waypoint velocity and position can

be found from successive integrations from t0 to tm as

vm =
1

2
t21α1 + t1β1 + v0 (4.23)

rm =
1

6
t31α1 +

1

2
t21β1 + v0t1 + r0 (4.24)

where time duration of the segment is defined as t1 = tm − t0.

The waypoint velocity and position can be found similarly for the second segment as

vm =
1

2
t22α2 + t2β2 + vf (4.25)

rm =
1

6
t32α2 +

1

2
t22β2 + vf t2 + rf (4.26)

where t2 = tf − tm.

Combining Eqs. 4.23 through 4.26 leads to the following boundary conditions

vf − v0 =
1

2
t21α1 +

1

2
t22α2 + t1β1 + t2βt (4.27)

v0t1 + vf t2 − rf + r0 = −1

6
t31α1 +

1

6
t32α2 −

1

2
t21β1 +

1

2
t22β2 (4.28)

The performance index, defined as Eq. 4.5, can now be expressed in terms of the unknown
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parameters α1, α2, β1, and β2 as

J =
1

2

∫ tf

t0

aTa dt

=
1

2

∫ tm

t0

aTa dt+
1

2

∫ tf

tm

aTa dt

=
1

2

[
1

3
αT

1 α1t
3
1 + αT

1 (β1 − g) t31 +
1

3
αT

2 α2t
3
2 + αT

2 (β2 − g) t32 + (β1 − g)T (β1 − g) t1

+ (β2 − g)T (β2 − g) t2

]
(4.29)

Define
[
αT

1 αT
2 βT1 βT2

]T
as the vector of to-be-determined constants. The waypoint opti-

mization problem can now be described as a standard quadratic programming problem, where

the goal is to determine a vector x which minimizes the following function

J =
1

2
xTHx + cTx (4.30)

where

H =



1
3 t

3
1I3 03

1
2 t

2
1I3 03

03
1
3 t

3
2I3 03

1
2 t

2
2I3

1
2 t

2
1I3 03 t1I3 03

03
1
2 t

2
2I3 03 t2I3


, c = −



1
2 t

2
1g

1
2 t

2
2g

t1g

t2g


subject to one or more constraints of the form

Aeqx = beq (4.31)

Aineqx ≤ bineq (4.32)

where I3 is the 3x3 identity matrix, and 03 is the 3x3 zero matrix.

The boundary condition given by Eqs. 4.27 and 4.28 is an equality constraint, which can

be cast in the standard form of Eq. 4.31 as

Aeq =

 1
2 t

2
1I3

1
2 t

2
2I3 t1I3 t2I3

−1
6 t

3
1I3

1
6 t

3
2I3 −1

2 t
2
1I3

1
2 t

2
2I3


beq =

 vf − v0

v0t1 + vf t2 − rf + r0


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Altitude constraints, such as the no-subsurface flight constraint, or a glide-slope constraint,

are inequality constraints. For brevity, in this example we look in detail at only the no-

subsurface flight constraint. Other inequality constraints can be handled similarly.

Let us divide the two mission segments into N1 and N2 equal intervals, respectively. Let

ai = (i · t1) /N1, (i = 1, 2, . . . , N1) denote the duration of each interval in the first mission

segment, and bi = (tf − j · t2) /N2, (j = 1, 2, . . . , N2 − 1) denote the duration of each interval

in the second mission segment. The no-subsurface flight constraint is thus described by[
0 1 0

](
1

6
a3
iα1 +

1

2
a2
iβ1 + aiv0 + r0

)
≥ i = 1, 2, . . . , N1 (4.33)[

0 1 0

](
1

6
b3jα2 +

1

2
b2jβ2 − bivf + rf

)
≥ j = 1, 2, . . . , N2 − 1 (4.34)

Eqs. 4.33 and 4.34 describe a total of N1 +N2− 1 inequality constraints. These constraints

can be cast in the standard form of Eq. 4.32 as

Aineq =



0 1
6a

3
1 0 0 0 0 0 1

2a
2
1 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 1
6a

3
N1

0 0 0 0 0 1
2a

2
N1

0 0 0 0

0 0 0 0 1
6b

3
1 0 0 0 0 0 1

2b
2
1 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 1
6b

3
N2−1 0 0 0 0 0 1

2b
2
N2−1 0


(N1+N2−1)·12

bineq =

[
y0 + a1ẏ0 . . . y0 + aN1 ẏ0 yf − ẏfb1 . . . yf − ẏfbN2

]T
(N1+N2−1)

The minimum altitude constraints, as well as glide slope constraint, etc., can similarly be

expressed in the form of Eq. 4.32. Details are omitted here.

A number of commercially available programs can solve this quadratic programming prob-

lem. Once the minimizing vector is found, the waypoint velocity and position can be found

from either Eqs. 4.23 and 4.24, or Eqs. 4.25 and 4.26. This approach can be extended to include

multiple waypoints, with each additional waypoint increasing the size of the unknown vector.
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4.5 Waypoint Optimization for Thrust-Limited Engine

For a spacecraft equipped with a thrust-limited engine, the engine exhaust velocity is fixed

at a constant value. The thrust magnitude is constrained as

0 ≤ T ≤ Tmax (4.35)

where Tmax is the maximum available thrust.

Considering control saturation, the ZEM/ZEV algorithm, given by Eq. 4.12, becomes

a = sat
Tmax/m

(
6

t2go
ZEM− 2

tgo
ZEV

)
(4.36)

where the normalized saturation function of a vector q is defined as

sat
U

(q) =

 q if |q|≤ U

q U
|q| if |q|> U

(4.37)

The normalized saturation function, given by Eq. 4.37, is non-differentiable at the critical

saturation points. Typical optimization packages, such as GPOPS, can make use of analytical

partial derivatives of the constraints with respect to the states and controls. Supplying these

derivatives can greatly improve the computational efficiency and accuracy of the optimiza-

tion problem. The following continuously differentiable function approximates the saturation

function

sat
U

(q) =


q if U

|q| > nU

Φ (q, U) · q if U
|q| ∈ [nL, nU ]

U
|q| · q if U

|q| < nL

(4.38)

where the function Φ is a second-order spline function, whose coefficients depend on the

endpoints of the interval. The modified saturation function becomes the normalized saturation

function when the interval (nL, nU ) shrinks to zero. For this study, the interval is chosen as

(0.9, 1.1). Then we have

Φ (q, U) = −2.5

(
U

|q|

)2

+ 5.5
U

|q|
− 2.025 (4.39)
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∂sat
U

(q)

∂q
=


I3 if U

|q| > 1.1

Φ (q, U) · I3 + U
|q|

(
5Uq| − 5.5

)
· qq

T

|q|2 if U
|q| ∈ [0.9, 1.1]

U
|q|

(
I3 − qqT

|q|2

)
if U
|q| < 0.9

(4.40)

where the continuity of the above equation can be easily verified.

The waypoint optimization problem for a thrust-limited engine becomes:

Determine the optimal waypoint (rm and vm) to connect the following two phases

Phase 1 (t0 ≤ t ≤ tm)

 r (t0) = r0 r (tm) = rm = free

v (t0) = v0 v (tm) = vm = free

Phase 2 (tm ≤ t ≤ tf )

 r (tm) = rm = free r (tf ) = rf

v (tm) = vm = free v (tf ) = vf

(4.41)

where each phase is governed by Eqs. 4.1 through 4.4 , and the acceleration command is assumed

to have the following form:

Phase 1 (t0 ≤ t ≤ tm) a = sat
Tmax/m

(ac1)

Phase 2 (tm ≤ t ≤ tf ) a = sat
Tmax/m

(ac2)
(4.42)

where

ac1 =
6 (rm − r)

(tm − t)2 −
2vm + 4v

tm − t
− g

ac2 = − 6r

(tf − t)2 −
4v

tf − t
− g

and the following path constraints are satisfied during the two phases

Phase 1 (t0 ≤ t ≤ tm) σc1 ≡ a− sat
Tmax/m

(ac1)

Phase 2 (tm ≤ t ≤ tf ) σc2 ≡ a− sat
Tmax/m

(ac2)
(4.43)

where the path constraints, σc1 and σc2, must be zero during the entire phase.

The derivatives of the dynamic equations and the cost function are straightforward to find.

Note that the path constraints in the two phases are the same. The partial derivatives of the

path constraints will be given for phase 1. The partial derivatives for phase 2 proceed similarly.

∂σc1
∂a

= I3 (4.44)
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∂σc1
∂r

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂r
=

∂ sat
Tmax/m

(a1)

∂a1
· 6

(tm − t)2 I3 (4.45)

∂σc1
∂rm

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂rm
=

∂ sat
Tmax/m

(a1)

∂a1
· −6

(tm − t)2 I3 (4.46)

∂σc1
∂v

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂v
=

∂ sat
Tmax/m

(a1)

∂a1
· 4

tm − t
I3 (4.47)

∂σc1
∂vm

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂vm
=

∂ sat
Tmax/m

(a1)

∂a1
· 2

tm − t
I3 (4.48)

∂σc1
∂t

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂t
= −

∂ sat
Tmax/m

(a1)

∂a1
·
(

12 (rm − r)

(tm − t)3 −
2vm + 4v

(tm − t)2

)
(4.49)

∂σc1
∂tm

= −
∂ sat
Tmax/m

(a1)

∂a1
· ∂a1

∂tm
=−

∂ sat
Tmax/m

(a1)

∂a1
·
(
−12 (rm − r)

(tm − t)3 +
2vm + 4v

(tm − t)2

)
(4.50)

The partial derivative of the path constraint with respect to mass can be obtained by

referring to Eq. 4.40. It is omitted here due to the lengthiness of the expression.

More waypoints can be obtained by considering more phases in GPOPS, and increasing

the number of waypoints would improve the optimality and decrease the difference with the

open-loop optimal solution, but more processing time would be required.

4.6 Waypoint-Optimized ZEM/ZEV Scheme

The complete procedure for conducting a Mars pinpoint landing mission using the waypoint-

optimized ZEM/ZEV feedback control scheme is proposed as follows:

1. At the end of the subsonic parachute entry phase, determine a suitable landing site.

2. Using the position and velocity of the lander, solve Eq. 4.15 to obtain the optimal flight

time tf .

3. For a power-limited engine, tf is the optimal flight time, which minimizes both J and ∆m.

Numerically propagate the dynamic system with the ZEM/ZEV algorithm to generate

the optimal trajectory. For a thrust-limited engine, tf can be considered a reference time.

A line search can be implemented to determine the optimal tf for either J or ∆m.
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4. If any part of the optimal trajectory violates an altitude constraint, go to step 5. Other-

wise, go to step 6.

5. Use the optimization approach discussed in this chapter to determine a waypoint to satisfy

the altitude constraint. Consider the optimized waypoint as an intermediate target, using

the ZEV/ZEM algorithm to reach this waypoint.

6. Finally, use the ZEM/ZEV algorithm to land the vehicle at the designated landing site.

The waypoint optimization step 5 requires a certain amount of computational time if tm

and/or tf is free. Because this guidance scheme is intended for real-time use, it is not advisable

to leave the times as completely free parameters. The process can be made much more efficient

if both of them are restricted to narrower ranges. The major challenge in a practical mission

is how to quickly find these times for step 5. Based on our experiences with a wide variety of

numerical simulations, a reasonable method is to simply use the same tf found in step 3, and

choosing the flight time corresponding to the lowest altitude on the optimal trajectory for tm.

Even though there is no strict guarantee of optimality, this selection has provided good

performance in our simulations, close to the performance with free waypoint and final times.

In a practical mission, the spacecraft is descending after the end of the parachute entry phase,

so a quick solution is desirable. The waypoint and final times are easily found from previous

steps, requiring minimal computation.

Both off-line and on-line waypoint optimization schemes have potential for practical im-

plementation. The conventional off-line optimal solution approach stores the entire profile on

board, and loses optimality if the lander deviates from the intended path. The waypoint method

only requires a single point to be stored, and due to the feedback nature of the ZEM/ZEV al-

gorithm, it is robust against disturbances. For online autonomous application, the vehicle

is controlled by the ZEM/ZEV algorithm with tf from step 3. If a waypoint is needed, the

ZEM/ZEV algorithm switches over to the waypoint-optimized ZEM/ZEV algorithm.
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4.7 Numerical Simulation Examples

A Mars landing example of [26] was examined for both a power-limited engine and a thrust-

limited engine. In addition to the ZEM/ZEV feedback guidance algorithms, open-loop optimal

solutions were generated with GPOPS for comparison. A spacecraft similar to the one de-

scribed in [26] is used, with an initial mass of 1905 kg. The initial conditions are given as

r0 = (2, 1.5, 0) km, v0 = (100,−75, 0) m/s. The landing site is at the origin of the refer-

ence frame, and for a soft landing the final velocity is zero. The final conditions are thus

rf = (0, 0, 0) km, vf = (0, 0, 0) m/s. The constant gravitational acceleration is assumed as

g = (0,−3.7114, 0) m/sˆ2. It is assumed that all system states are available without any

measurement error.

4.7.1 Mars Landing with Power-Limited Engine

The power-limited engine may not be available for an actual Mars landing mission; however,

it is considered here for a couple of reasons. First, our main research interest is in planetary

landing, so this is a way to look at different engine dynamics within our motivating example.

Second, as described previously, fuel usage can be directly minimized, unlike with the thrust-

limited engine. This happens when the engine operates at the maximum power level, therefore

for these simulations the engine is assumed to always operate at the maximum power level.

The quadratic programming problem for waypoint optimization is solved using the MATLAB

quadprog function with default options. In all test cases the required processing time is less

than 0.1 s.

Figure 4.1 shows the optimal trajectories and corresponding fuel usage histories for the

standard ZEM/ZEV algorithm, and for the ZEM/ZEV waypoint method with altitude con-

straints. From step 2 of the landing procedure, the optimal tf is found to be 90.6 s. Checking

Eq. 4.19 reveals that the upper bound on flight time is 60 s. The solid-line trajectory in Fig. 4.1

shows that the optimal trajectory for a 90.6 s flight indeed violates the no-subsurface constraint.

By adjusting the tf to 60 s, the ZEM/ZEV algorithm produces the dotted-line trajectory in

Fig. 4.1, which does not violate the constraint. However, the mass usage comparison in Fig. 4.1
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shows that the mission with adjusted flight time uses significantly more fuel.

(a) Vehicle Trajectory. (b) Vehicle Mass.

Figure 4.1 Comparisons of various forms of the ZEM/ZEV algorithm (power-limited engine).

The waypoint-optimized ZEM/ZEV algorithm can be employed to improve the performance

of the mission, while still satisfying the altitude constraints. Following the suggestion for

selecting proper waypoint time and final time, the mission time tf is kept as 90.6 s. From the

simulation of the trajectory for the basic ZEM/ZEV algorithm with a 90.6 s mission time, the

time corresponding to the minimum altitude is 54.1 s. This is chosen for the waypoint time tm.

Two types of altitude constraint are considered for the waypoint-optimized ZEM/ZEV

method. First is the simple no-subsurface flight constraint, shown as the dash-dot line in

Fig. 4.1. A slightly more sophisticated constraint, keeping the glide slope above 4 degrees, is

shown by the dashed line. Note that such a constraint automatically satisfies the no-subsurface

flight constraint. Figure 4.1 shows that the fuel usage for both waypoint schemes is nearly

identical to the basic optimal ZEM/ZEV algorithm.

Figure 4.2 shows engine performance histories for the case with one waypoint and a no-

subsurface flight constraint, shown as the dotted blue line in Fig. 4.1. The dotted line in

this figure shows the power-limited engine case; the thrust-limited case will be discussed later.

The optimal constant power level can be seen, as well as gently changing curves for control

magnitude and mass consumption rate. The changing exhaust velocity required for the power-

limited engine is also shown.



www.manaraa.com

81

Figure 4.2 Engine performance histories for waypoint-optimized Mars landing.

The waypoint-optimized ZEM/ZEV scheme is intended to be used on-line, finding the

optimal waypoint in real time for a range of possible initial conditions. To demonstrate the

applicability of the method for different initial conditions, a range of initial conditions are

simulated. The initial velocity and altitude are held constant, while the initial horizontal

position ranges from -8 km to 3 km. A 50-m minimum altitude is imposed to avoid collision

with surface hazards, making the final position rf = (0, 50, 0) m. From here the lander can

descend straight down onto the landing site. Figure 4.3 shows the optimal trajectories for a

variety of initial conditions. Three different ZEM/ZEV methods are shown, as well as the

open-loop optimal solution. The four control schemes are:

• ZEM/ZEV with optimal tf (Fig. 4.7.1): the standard ZEM/ZEV algorithm is employed,

using the calculated optimal time, with no constraints. For many of the initial posi-

tions considered, the optimal trajectory passes through the surface, even with the 50 m

“cushion.”

• ZEM/ZEV with adjusted tf (Fig. 4.7.1): the standard ZEM/ZEV algorithm is again

used, but the upper bound on flight time is enforced for cases that would violate the

no-subsurface flight constraint. All of the trajectories for this case stay above the surface.
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• Waypoint-optimized ZEM/ZEV (Fig. 4.7.1): the quadratic programming problem is solved

to determine the optimal waypoint, with tf and tm determined following the suggested

procedure. The waypoints for each trajectory are shown as asterisks. All trajectories

again stay above the surface. Other altitude constraints can be added by modifying the

inequality constraints.

• Open-loop optimal (Fig. 4.7.1): The optimal solution, found by GPOPS, and satisfying

the altitude constraint. These optimal trajectories look nearly identical to the waypoint-

optimized ZEM/ZEV trajectories.

(a) ZEM/ZEV with optimal tf . (b) ZEM/ZEV with adjusted tf .

(c) Waypoint optimized ZEM/ZEV. (d) Open-loop optimal.

Figure 4.3 Vehicle trajectories using various methods (power-limited engine).
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For some initial conditions, the basic ZEM/ZEV algorithm works without violating the

altitude constraint. For other cases, either the mission time needs to be adjusted, or a waypoint

must be added. The performance of the various control schemes must ultimately be evaluated

by comparing either the performance index J or the fuel usage ∆m. Figure 4.4 shows the

performance of each of the four algorithms in terms of J . The trends in ∆m are similar and

are not shown here. The mission time tf is also shown. For initial conditions with horizontal

range approximately between -4.5 km and 0.5 km, the lander starts out “headed in the right

direction,” and all four schemes show almost identical performance. Outside of this range, the

effectiveness of the waypoint-optimized ZEM/ZEV algorithm is apparent. For these cases, the

scheme with adjusted tf uses significantly more fuel than the optimal solution. ZEM/ZEV

with optimal tf performs nearly as well as the optimal solution, but for these cases the no-

subsurface flight condition is violated, resulting in mission failure. The waypoint-optimized

ZEM/ZEV algorithm achieves near-optimal performance while satisfying the constraint. In

other words, for a variety of initial conditions, the proposed waypoint scheme achieves almost

identical performance with the open-loop optimal solution.

(a) Performance index J
(
m2/s3

)
. (b) Total flight time tf (s).

Figure 4.4 Performance comparison of ZEM/ZEV and open-loop methods (power-limited en-

gine).
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4.7.2 Mars Landing with Thrust-Limited Engine

Unlike for a power-limited engine, for a thrust-limited engine, minimizing J is not equivalent

to minimizing ∆v. Furthermore, due to the nonlinear constraint on control acceleration, the

optimal flight time found from step 2 does not guarantee an optimal J . Although the proposed

ZEM/ZEV approach is not intended to be fuel-optimal, we will consider fuel usage to be the

performance measure of interest, because it is of interest in any practical mission.

For the simulations shown, the spacecraft model is similar to that discussed in [26]. The

maximum control force from the thrusters is assumed to be 16.753 kN, of which only 80% is

available for control (leaving a conservative margin). The engine exhaust velocity, c, is fixed at

1.964 km/s (1/c = 5.09x10−4s/m).

Equation 4.19, used to determine the upper bound of tf , does not take into account sat-

uration constraints. The method of adjusting tf does not work well in general. Typically, tf

is decreased to force a “straight shot” and avoid violating the no-subsurface flight constraint.

However, fulfilling the same mission in less time usually requires higher acceleration levels dur-

ing the mission. Adjusting the flight time downward to avoid collision thus results in control

saturation.

Figure 4.5 shows vehicle trajectories and throttle level histories for various mission times

for the ZEM/ZEV algorithm, and corresponding minimum altitudes and fuel usage. When

the flight time is less than 67 s, the controls are saturated the entire time, and the terminal

requirements are not met. By increasing the flight time above 67 s, the vehicle can successfully

meet the terminal requirements, but the no-subsurface constraint is violated. For all times

tested, the minimum altitude is below the surface. Fuel usage increases with increasing flight

time, but even setting aside concerns on fuel usage, the landing mission cannot be accomplished

solely by adjusting tf .

Figure 4.6 shows a family of fuel-optimal solutions for a vehicle with a thrust-limited engine.

For these initial conditions, the initial velocity and altitude are held constant, and the initial

horizontal range is varied. These results can be obtained either by directly using TOMLAB

optimization software, or by solving a second-order cone problem using the SeDuMi software
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(a) ZEM/ZEV vehicle trajectories with typical tf . (b) ZEM/ZEV throttle levels with typical tf .

(c) Minimum altitude for various tf . (d) Fuel usage ∆m for various tf .

Figure 4.5 Performance of ZEM/ZEV algorithm with various flights times (thrust-limited

engine).
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package. [26] GPOPS can also be used to find these results, but for this particular problem

GPOPS requires more computational time. From the family of trajectories shown, it is seen

that when the landing site is ahead of the vehicle, the fuel-optimal trajectories converge inside

an envelope before landing. When the landing site is behind the vehicle’s initial position, the

optimal trajectory turns around, then touches the surface, before turning upwards and finally

landing. These trajectories also converge on an envelope on the final approach.

Figure 4.6 Fuel-optimal vehicle trajectories (thrust-limited engine).

The waypoint optimization scheme was examined for the case where simply adjusting tf

fails. From Fig. 5, it can be seen that the optimal tf is 72 s. The corresponding time of minimum

altitude is 47 s, chosen for tm. Figure 4.7 shows the vehicle trajectories and throttle histories

for the standard ZEM/ZEV algorithm, the ZEM/ZEV waypoint method, and the open-loop

optimal solution. By using GPOPS to find an optimized waypoint, the ZEM/ZEV waypoint

method successfully completes the landing mission in the presence of control saturation and

a no-subsurface flight constraint. The fuel-optimal throttle shows the classical bang-off-bang

form, resulting in fuel usage of 387.7 kg. The ZEM/ZEV waypoint algorithm uses 396.2 kg, only
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2.2% more. Figure 4.2, previously shown, also provides detailed engine performance histories

for the case with one waypoint, shown as a dotted line in Fig. 4.7. The piecewise nature of the

control, with a jump at the waypoint, is easily seen.

(a) Vehicle trajectory. (b) Throttle level.

Figure 4.7 Comparison of ZEM/ZEV algorithm and fuel-optimal solution (thrust-limited en-

gine).

In order to demonstrate the effectiveness of the proposed ZEM/ZEV waypoint strategy for

a range of initial conditions, the initial position was varied, as in the last section. The initial

velocity and altitude are held constant, while the initial horizontal position ranges from -8 km

to 3 km. A 50-m minimum altitude is imposed to avoid collision with surface hazards, making

the final position rf = (0, 50, 0)m. From here the lander can descend straight down onto the

landing site. Figure 8 shows the optimal trajectories for a variety of initial conditions. Two

ZEM/ZEV methods are shown, as well as the open-loop optimal solution. The three control

schemes are:

• ZEM/ZEV with optimal tf to minimize ∆m (Fig. 4.7.2): The dynamic system is nu-

merically propagated using the ZEM/ZEV algorithm. A Newton iteration method is

used to find the tf which minimizes ∆m. For initial horizontal ranges from -8 km to -1

km successfully complete the mission, while initial ranges larger than -1 km violate the

no-subsurface flight constraint.
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• Waypoint-optimized ZEM/ZEV (Fig. 4.7.2): Fuel-optimal waypoints are found using

GPOPS. Analytical derivatives are provided to GPOPS, utilizing the differentiable satu-

ration function in Eq. 4.37. The waypoints are shown as asterisks. The mission can be

successfully carried out for all of the initial conditions shown.

• Open-loop fuel optimal (Fig. 4.7.2): The fuel-optimal results, similar to those shown in

Fig. 4.7.1, are generated by using either TOMLAB or SeDuMi.

(a) ZEM/ZEV with optimal tf to minimize ∆m. (b) Waypoint-optimized ZEM/ZEV.

(c) Open-loop fuel-optimal.

Figure 4.8 ZEM/ZEV and open-loop trajectories for minimizing ∆m (thrust-limited engine).

The waypoint-optimized scheme results in trajectories that are qualitatively similar overall

to the open-loop optimal trajectories, showing that adding one waypoint can change an infea-
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sible ZEM/ZEV mission to a nearly optimal one. Figure 4.9 shows the fuel used and the total

flight time for the various initial positions. The fuel usage from the waypoint method tracks

very closely to the optimal, with slight variations at either extreme. The total mission times

are also very close, showing that the waypoint method does approximate the open-loop optimal

solution.

(a) Performance index ∆m. (b) Total flight time.

Figure 4.9 Fuel-optimal solution and waypoint-optimized ZEM/ZEV (thrust-limited engine)..

Based on the numerical tests shown here, the optimal waypoint can usually be found within

5-15 s when tf and tm are fixed. When those times are free, the optimization takes longer, and

depends on the initial guess and range for each. Finding the optimal solution for a broad range

of times can take up to a couple of minutes. For this reason, it is recommended that a fixed tf

and tm are used.

4.8 Concluding Remarks

This chapter investigated the implementation of ZEM/ZEV feedback guidance scheme for

the powered descent phase of a Mars pinpoint landing mission. Two types of engine, power-

limited and thrust-limited, were considered.

When a collision with the surface of Mars was predicted for the standard ZEM/ZEV algo-

rithm, an intermediate waypoint is chosen using a numerical optimization program. The lander
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uses ZEM/ZEV feedback guidance to reach the waypoint, then uses ZEM/ZEV guidance to

reach the landing site. For the power-limited engine, the control acceleration is not directly

constrained, and so only a minimum altitude constraint is considered. The waypoint opti-

mization problem can be formulated as a standard quadratic programming problem. Several

numerical optimization software packages can be used to solve this problem.

For the thrust-limited engine, a non-linear saturation constraint is considered, in addition

to the no-subsurface flight constraint. The GPOPS package was used to find the optimal

waypoint. A continuously differentiable approximation to the standard saturation function is

introduced to provide analytical partial derivatives of various constraints with respect to states

and controls, these derivatives are passed to GPOPS to speed up optimization process.

Numerical simulations for a few illustrative examples were performed. The ZEM/ZEV algo-

rithms described in this chapter were used, and the corresponding open-loop optimal solutions

were found for comparison. Results show that constraints cannot be consistently satisfied solely

by changing flight time. Instead, an optimized waypoint is used as an intermediate target for

the ZEM/ZEV scheme. Comparison with the open-loop optimal solution shows that the way-

point method achieves near-optimal performance, while maintaining the desirable robustness

properties of a feedback controller.

The waypoint-optimized ZEM/ZEV feedback guidance algorithm is more suitable for au-

tonomous implementation than any purely open-loop method. The scheme requires only one

waypoint to be stored, and the feedback nature is robust to disturbances. A real autonomous

mission requires real-time computation of the optimal waypoint, starting from a range of pos-

sible initial conditions. A specialized optimizer for this problem is needed to ensure that the

waypoint can be found quickly. Developing such an optimizer is a future research task.

Finally, the waypoint-optimized ZEM/ZEV algorithm is not restricted to Mars landing. In

its most general form, it can be potentially apply to many other orbital maneuvering problems.

A further detailed study of the application of the generalized ZEM/ZEV algorithm, both with

and without a waypoint, can be found in Ref. [25].
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CHAPTER 5. Conclusion

5.1 General Summary

This dissertation has discussed a variety of guidance laws, as applied to asteroid missions.

The guidance laws discussed range from classical to modern. The main applications considered

are asteroid intercept and rendezvous. The guidance laws are also shown to be well-suited to

other applications, such as planetary landing and orbital transfer.

The guidance laws discussed lead to the zero-effort-miss/zero-effort-velocity (ZEM/ZEV)

guidance law, which is seen to be a more general form of the other laws. The ZEM/ZEV

guidance law is discussed, and several extensions and modifications are shown to increase the

number of applications it can be used for. These modifications include adding one or more

waypoints to satisfy constraints, and including information about the dynamics of the system

to overcome nonlinearity effects.

The ZEM/ZEV guidance law is shown through examples to be applicable to a wide variety

of applications. In many cases, some form of ZEM/ZEV guidance can be used to achieve

near-optimal performance with a closed-loop feedback guidance law.

5.2 Additional topics and future work

In addition to the research described in this dissertation, several other topics of interest

have been studied at the Asteroid Deflection Research Center. These topics will be briefly

discussed here, as well as descriptions of future work to be undertaken at the ADRC.
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5.2.1 High-fidelity simulation with CLEON software

The effectiveness of guidance laws even in the presence of realistic measurement noise and

uncertainties must be verified to assure that they can be applied in practical situations. One

such simulator, GMV’s CLEON, has been used at the ADRC to test guidance laws with realistic

disturbances. CLEON is a Matlab-based simulator that models the full spacecraft, including

sensors such as accelerometers and navigation cameras, as well as thruster dynamics. Motion

of the center of brightness, described in Section 5.2.3, is also included.

CLEON can perform Monte Carlo analysis of different guidance laws, with options for dif-

ferent thrusters, sensors, and filters. Results of Monte Carlo analysis of the PN-based guidance

laws and the predictive guidance laws can be found in Ref. [9] A full description of the CLEON

package is also included.

As the ADRC continues to build a knowledge base, an in-house high-fidelity simulator

should be developed, including sensors, attitude dynamics, and thrusters. Monte Carlo analysis

of guidance law performance with uncertainties will continue to verify the performance of the

guidance laws used for asteroid missions.

5.2.2 Missions in the irregular gravity field near an asteroid

Most asteroids of particular interest to the ADRC are irregular, and thus have a complex

gravitational field. Proximity operations, including orbit and soft landing, are affected by the

gravitational field. The gravitational fields of asteroids need to be studied for both modeling

and guidance law design. Accurate models of gravitational fields are required for simulations

to verify the performance of spacecraft systems near asteroids. Additionally, many guidance

laws benefit from inclusion of a model of the asteroid’s gravity field.

Fuel-efficient feedback control of spacecraft near irregular-shaped asteroids was investigated

in Ref. [44]. Other aspects of proximity operations, including transfer between orbits and soft

landing, was investigated in Ref. [45]. More sophisticated research into gravitational fields,

including guidance law design for missions where the gravitational field is not well-known a

priori, is a future research area.
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5.2.3 Feedback guidance with a realistic optical navigation model

Hypervelocity impact, as demonstrated by missions such as NASA’s Deep Impact mission,

require autonomous GNC systems for terminal guidance. The combination of lighting condi-

tions and the irregular shape of the asteroid presents a challenge for optical navigation systems.

The ADRC is currently developing an optical navigation simulator capable of simulating cam-

era images based on a polyhedron model of an asteroid. From these images the center of

brightness is computed. The center of brightness moves as the asteroid rotates, and as the

spacecraft approaches. Continued development of this optical navigation simulator will allow

the ADRC to simulate missions to realistic target asteroids.
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